Skip to main content

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen H, Reutebuch SE, McGaughey RJ (2006) A rigorous assessment of tree height measurements obtained using airborne LIDAR and conventional field methods. Can J Rem Sens 32:355–366

    Google Scholar 

  • Anderson J, Martin ME, Smith ML, Dubayah RO, Hofton MA, Hyde P, Peterson BE, Blair JB, Knox RG (2006) The use of waveform LIDAR to measure northern temperate mixed conifer and deciduous forest structure in New Hampshire. Remote Sens Environ 105:248–261

    Article  Google Scholar 

  • Baltsavias E (1999) Airborne laser scanning: basic relations and formulas. ISPRS J Photogramm 54:199–214

    Article  Google Scholar 

  • Blair JB, Rabine DL, Hofton MA (1999) The laser vegetation imaging sensor: a medium-altitude, digitization-only, airborne laser altimeter for mapping vegetation and topography. ISPRS J Photogramm 54:115–122

    Article  Google Scholar 

  • Bortolot Z, Wynne R (2005) Estimating forest biomass using small footprint LIDAR data: an individual tree-based approach that incorporates training data. ISPRS J Photogramm 59:342–360

    Article  Google Scholar 

  • Cobby DM,Mason DC, Davenport IJ (2001) Image processing of airborne scanning laser altimetry data for improved river flood modeling. ISPRS J Photogramm 56:121–138

    Google Scholar 

  • Cracknell AP, Hayes L (2006) Introduction to remote sensing, 2nd edn. Taylor and Francis, UK

    Google Scholar 

  • Drake JB, Dubayah RO, Clark DB, Knox RG, Blair JB, Hofton MA, Chazdon RL, Weishampel JF, Prince S (2002) Estimation of tropical forest structural characteristics, using large-footprint LIDAR. Remote Sens Environ 79:305–319

    Article  Google Scholar 

  • Dubayah RO, Drake JB (2000) LIDAR remote sensing for forestry. J Forest 98:44–46

    Google Scholar 

  • Fowler R, Samberg A, Flood MJ, Greaves TJ (2007) Topographic and terrestrial LIDAR. In: Maune DF (ed) Digital elevation model technologies and applications: the DEM users manual. American Society for Photogrammetry and Remote Sensing, Bethesda, pp 199–248

    Google Scholar 

  • Gibeaut JC, White WA, Smyth RC, Andrews JR, Tremblay TA, Gutiérrez R, Hepner TL, Neuenschwander A (2003) Topographic variation of barrier island subenvironments and associated habitats. Coastal sediments ′03: proceedings of the fifth international symposium on coastal engineering and science of coastal sediment processes, American Society of Civil Engineers, CD-ROM

    Google Scholar 

  • Göpfert J, Heipke C (2006) Assessment of LIDAR DTM accuracy in coastal vegetated areas. Int Arch Photogram Rem Sens Spatial Inform Sci 36:79–85

    Google Scholar 

  • Guenther G (2007) Airborne LIDAR bathymetry. In: Maune DF (ed) Digital elevation model technologies and applications: the DEM users manual. American Society for Photogrammetry and Remote Sensing, Bethesda, pp 253–320

    Google Scholar 

  • Harding DJ, Lefsky MA, Parker GG, Blair JB (2001) Laser altimeter canopy height profiles: methods and validation for closed- canopy, broadleaf forests. Remote Sens Environ 76:283–297

    Article  Google Scholar 

  • Hensley S, Munjy R, Rosen P (2007) Interferometric Synthetic Aperture Radar (IFSAR). In: Maune DF (ed) Digital elevation model technologies and applications: the DEM users manual. American Society for Photogrammetry and Remote Sensing, Bethesda, pp 141–198

    Google Scholar 

  • Hofton MA, Rocchio LE, Blair JB, Dubayah R (2002) Validation of vegetation canopy LIDAR sub-canopy topography measurements for a dense tropical forest. J Geodyn 34:491–502

    Article  Google Scholar 

  • Hollaus M, Wagner W, Maier B, Schadauer K (2007) Airborne laser scanning of forest stem volume in mountainous environments. Sensors 7:1559–1577

    Article  Google Scholar 

  • Hopkinson C, Chasmer LE, Lim K, Treitz P, Creed I (2006) Towards a universal LIDAR canopy height indicator. Can J Rem Sens 32:139–152

    Google Scholar 

  • Hopkinson C, Chasmer LE, Sass G, Creed I, Sitar M, Kalbfleisch W, Treitz P (2005) Vegetation class dependent errors in LIDAR ground elevation and canopy height estimates in a boreal wetland environment. Can J Rem Sens 31:191–206

    Google Scholar 

  • Hug C, Ullrich A, Grimm A (2004) Litemapper-5600: a waveform-digitizing LIDAR terrain and vegetation mapping system. Int Arch Photogram Rem Sens Spatial Inform Sci 36:24–49

    Google Scholar 

  • Innes JL, Koch B (1998) Forest biodiversity and its assessment by remote sensing. Global Ecol Biogeogr 7:397–419

    Article  Google Scholar 

  • Kite GW, Pietroniro A (1996) Remote sensing applications in hydrological modeling. Hydrolog Sci J 41:563–591

    Article  Google Scholar 

  • Lefsky MA, Harding D, Cohen WB, Parker G, Shugart HH (1999) Surface LIDAR remote sensing of basal area and biomass in deciduous forest of eastern Maryland, USA. Remote Sens Environ 67: 83–98

    Article  Google Scholar 

  • Lim K, Trietz P, Wulder M, St.-Onge B, Flood M (2003) LIDAR remote sensing of forest structure. Prog Phys Geog 27:88–106

    Article  Google Scholar 

  • Magnussen S, Boudewyn P (1998) Derivations of stand height from airborne laser scanner data with canopy-based quantile estimators. Can J Forest R 28:1016–1031

    Article  Google Scholar 

  • Maltamo M, Eerikainen K, Pitkanen J, Hyyppa J, Vehmas M (2004) Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions. Remote Sens Environ 90:319–330

    Article  Google Scholar 

  • Mason DC, Cobby DM, Horritt MS, Bates PD (2003) Floodplain friction parameterisation in two-dimensional river flood models using vegetation heights derived from airborne laser altimetry. Hydrol Processes 17:1711–1732

    Article  Google Scholar 

  • Means JE, Acher SA, Harding DJ, Blair JB, Lefsky MJ, Cohen WB, Harmon ME, Mckee WA (1999) Use of large-footprint scanning airborne LIDAR to estimate forest stand characteristics in the western Cascades of Oregon. Remote Sens Environ 67: 298–308

    Article  Google Scholar 

  • Morris JT, Porter D, Neet M, Noble PA, Schmidt L, Lapine LA, Jensen JR (2005) Integrating LIDAR elevation data, multi-spectral imagery and neural network modelling for marsh characterization. Int J Remote Sens 26:5221–5234

    Article  Google Scholar 

  • Næsset E (2002) Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens Environ 80:88–99

    Article  Google Scholar 

  • Nayegandhi A, Brock JC, Wright CW, O’Connell MO (2006) Evaluating a small-footprint, waveform-resolving LIDAR over coastal vegetation communities. Photogramm Eng Rem S 12:1408–1417

    Google Scholar 

  • Nayegandhi A, Brock JC, Wright CW. Small-footprint, waveform-resolving LIDAR estimation of submerged and sub-canopy topography in coastal environments. Int J Remote Sens. (In press)

    Google Scholar 

  • Parker GG, Harding DJ, Berger ML (2004) A portable LIDAR system for rapid determination of forest canopy structure. J Appl Ecol 41:755–767

    Article  Google Scholar 

  • Persson A, Soderman U, Topel J, Ahlberg S (2005) Visualization and analysis of full-waveform airborne laser scanner data. Proceedings of the ISPRS WG III/3, III/4, V/3 workshop “laser scanning 2005”, Enschede, the Netherlands, pp 103–108

    Google Scholar 

  • Popescu SC, Wynne RH, Nelson RF (2003) Measuring individual tree crown diameter with LIDAR and assessing its influence on estimating forest volume and biomass. Can J Rem Sens 29: 564–577

    Google Scholar 

  • Sithole G, Vosselman G (2004) Experimental comparison of filter algorithms for bare-earth extraction from airborne scanning point clouds. ISPRS J Photogramm 59:85–101

    Article  Google Scholar 

  • Spies TA (1998) Forest structure: a key to the ecosystem. Northwest Sci 72:34–39

    Google Scholar 

  • Straatsma MW, Middlekoop H (2006) Airborne laser scanning as a tool for lowland floodplain vegetation monitoring. Hydrobiologia 565:87–103

    Article  Google Scholar 

  • Toyra J, Pietroniro A, Hopkinson C, Kalbfleisch W (2003) Assessment of airborne scanning laser altimetry (LIDAR) in a deltaic wetland environment. Can J Rem Sens 29:718–728

    Google Scholar 

  • Wagner W, Ullrich A, Ducic V, Melzer T, Studnicka N (2006) Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner. ISPRS J Photogramm 60:100–112

    Article  Google Scholar 

  • Wagner W, Ullrich A, Melzer T, Briese C, Kraus K (2004) From single-pulse to full-waveform airborne laser scanners: potential and practical challenges. Int Arch Photogram Rem Sens 35B: 201–206

    Google Scholar 

  • Wehr A, Lohr U (1999) Airborne laser scanning - an introduction and overview. ISPRS J Photogramm 54:68–82

    Article  Google Scholar 

  • Williams K, Pinzon ZS, Stumpf RP, Raabe EA (1999) Sea-level rise and coastal forests on the Gulf of Mexico. U.S. Geological Survey Open-File Report 99–441

    Google Scholar 

  • Wright CW, Brock JC (2002) EAARL: a LIDAR for mapping shallow coral reefs and other coastal environments. Proceedings of the seventh international conference on remote sensing for marine and coastal environments, Miami, FL, CD-ROM

    Google Scholar 

  • Yu X, Hyyppa J, Hyyppa H, Maltamo M (2004) Effects of flight altitude on tree height estimation using airborne laser scanning. Int Arch Photogram Rem Sens 36:96–101

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nayegandhi, A., Brock, J.C. (2009). Assessment of Coastal-Vegetation Habitats Using Airborne Laser Remote Sensing. In: Yang, X. (eds) Remote Sensing and Geospatial Technologies for Coastal Ecosystem Assessment and Management. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88183-4_16

Download citation

Publish with us

Policies and ethics