Skip to main content

Topology and Quantum Computing

  • Chapter
Entanglement and Decoherence

Part of the book series: Lecture Notes in Physics ((LNP,volume 768))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. H. Kauffman and S. J. Lomonaco Jr.: $q$-deformed spin networks, knot polynomials and anyonic topological quantum computation, arXiv:quant-ph/0606114

    Google Scholar 

  2. L. H. Kauffman: State models and the Jones polynomial, Topology 26, 395–407 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  3. L. H. Kauffman: Knots and Physics, 3rd edn (World Scientific Publishers, Singapore 1991)

    Book  MATH  Google Scholar 

  4. F. Wilczek: Fractional Statistics and Anyon Superconductivity (World Scientific Publishing Company, Singapore 1990)

    Google Scholar 

  5. E. Fradkin and P. Fendley: Realizing non-abelian statistics in time-reversal invariant systems, Theory Seminar, Physics Department, UIUC, 4/25/2005

    Google Scholar 

  6. N. E. Bonesteel, L. Hormozi, G. Zikos and S. H. Simon: Braid topologies for quantum computation, Phys. Rev. Lett. 95, 140503 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  7. S. H. Simon, N. E. Bonesteel, M. H. Freedman, N. Petrovic and L. Hormozi: Topological quantum computing with only one mobile quasiparticle, Phys. Rev. Lett. 96, 070503 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  8. C. Ernst and D. W. Sumners: A calculus for rational tangles: Applications to DNA Recombination, Math. Proc. Camb. Phil. Soc. 108, 489-515 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. L. H. Kauffman (ed): Knots and Applications (World Scientific, Singapore 1996)

    Google Scholar 

  10. L. Smolin: Link polynomials and critical points of the Chern-Simons path integrals, Mod. Phys. Lett. A 4, 1091–1112 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  11. C. Rovelli and L. Smolin: Spin networks and quantum gravity, Phys. Rev. D 52, 5743–5759 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  12. L. H. Kauffman and T. Liko: Knot theory and a physical state of quantum gravity, Class. Quantum Grav. 23, R63 (2006), arXiv:hep-th/0505069

    Article  MATH  MathSciNet  Google Scholar 

  13. P. A. M. Dirac: Principles of Quantum Mechanics (Oxford University Press, Oxford 1958)

    MATH  Google Scholar 

  14. M. A. Nielsen and I. L. Chuang: Quantum Computation and Quantum Information (Cambrige University Press, Cambridge 2000)

    MATH  Google Scholar 

  15. R. J. Baxter: Exactly Solved Models in Statistical (Mechanics. Acad. Press, London 1982)

    MATH  Google Scholar 

  16. H. Dye: Unitary solutions to the Yang-Baxter equation in dimension four, Quant. Inf. Proc. 2, 117–152 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Y. Zhang, L.H. Kauffman and M. L. Ge: Yang-Baxterizations, universal quantum gates and Hamiltonians, Quant. Inf. Proc. 4, 159–197 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. J. L. Brylinski and R. Brylinski: Universal quantum gates. In: Mathematics of Quantum Computation, ed by R. Brylinski and G. Chen (Chapman & Hall/CRC Press, Boca Raton 2002)

    Google Scholar 

  19. L. H. Kauffman and S. J. Lomonaco: Braiding operators are universal quantum gates, New J. Phys. 6, 134 (2004)

    Article  ADS  Google Scholar 

  20. B. Schumacher, Ph.D. Thesis.

    Google Scholar 

  21. P. K. Aravind: Borromean entanglement of the GHZ state. In Potentiality, Entanglement and Passion-at-a-Distance, ed by R. S. Cohen et al (Kluwer, Dordrecht 1997) pp. 53–59

    Google Scholar 

  22. L. H. Kauffman and S. J. Lomonaco Jr.: Quantum knots. In: Quantum Information and Computation II, Proceedings of Spie, 12–14 April 2004, ed by Donkor Pirich and Brandt, (2004) pp. 268–284.

    Google Scholar 

  23. V. F. R. Jones: Hecke algebra representations of braid groups and link polynomials, Ann. of Math. 126, 335–338 (1987)

    Article  MathSciNet  Google Scholar 

  24. V. F. R. Jones: On knot invariants related to some statistical mechanics models, Pacific J. Math. 137, 311–334 (1989)

    MATH  MathSciNet  Google Scholar 

  25. L. H. Kauffman: Statistical mechanics and the Jones polynomial, AMS Contemp. Math. Series 78, 263–297 (1989)

    MathSciNet  Google Scholar 

  26. L. H. Kauffman: Temperley–Lieb Recoupling Theory and Invariants of Three-Manifolds, Annals Studies 114 (Princeton University Press, Princeton 1994)

    Google Scholar 

  27. L. H. Kauffman: New invariants in the theory of knots, Amer. Math. Monthly 95, 195–242 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  28. L. H. Kauffman (ed): The Interface of Knots and Physics, vol 51 AMS PSAPM (Providence, RI 1996)

    Google Scholar 

  29. Y. Akutsu and M. Wadati: Knot invariants and critical statistical systems, J. Phys. Soc. Japan 56, 839–842 (1987)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. L. H. Kauffman and D. E. Radford: Invariants of 3-manifolds derived from finite-dimensional Hopf algebras, J. Knot Theory Ramifications 4, 131–162 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  31. N. Y. Reshetikhin and V. Turaev: Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127, 1–26 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. N. Y. Reshetikhin and V. Turaev: Invariants of three manifolds via link polynomials and quantum groups, Invent. Math. 103, 547–597 (1991)

    MATH  MathSciNet  Google Scholar 

  33. V. G. Turaev: The Yang-Baxter equations and invariants of links, LOMI preprint E-3-87, Steklov Institute, Leningrad, USSR. Inventiones Math. 92, Fasc. 3, 527–553

    Google Scholar 

  34. V. G. Turaev and O. Viro: State sum invariants of 3-manifolds and quantum 6j symbols, Topology, 31, 865–902 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  35. L. H. Kauffman: Quantum computing and the Jones polynomial. In: Quantum Computation and Information, ed by S. Lomonaco Jr. (AMS CONM/305, 2002) pp. 101–137, arXiv:math.QA/0105255

    Google Scholar 

  36. D. Aharonov, V. Jones and Z. Landau: A polynomial quantum algorithm for approximating the Jones polynomial, Proc. thirty-eighth Ann. ACM STC (2006), arXiv:quant-ph/0511096

    Google Scholar 

  37. L. H. Kauffman and S. J. Lomonaco Jr.: Topological quantum computing and the Jones polynomial, arXiv:quant-ph/0605004

    Google Scholar 

  38. D. Aharonov and I. Arad: The BQP-hardness of approximating the Jones polynomial, arXiv:quant-ph/0605181

    Google Scholar 

  39. P. Wocjan and J. Yard: The Jones polynomial: quantum algorithms and applications in quantum complexity theory, arXiv:quant-ph/0603069

    Google Scholar 

  40. G. Benkart: Commuting actions – a tale of two groups. In: Lie algebras and Their Representations (Seoul 1995); Contemp. Math. Series 194, 1–46 (1996)

    MathSciNet  Google Scholar 

  41. L. H. Kauffman: Knot diagrammatics. In: Handbook of Knot Theory, ed by Menasco and Thistlethwaite (Elsevier B. V., Amsterdam 2005) pp. 233–318, arXivmath.GN/0410329:

    Chapter  Google Scholar 

  42. L. H. Kauffman: Teleportation topology. In: The Proceedings of the 2004 Byelorus Conference on Quantum Optics, Opt. Spectrosc. 9, 227–232 (2005), arXiv:quant-ph/0407224

    Article  ADS  Google Scholar 

  43. B. Coecke: The logic of entanglement, arXiv:quant-phy/0402014

    Google Scholar 

  44. S. Abramsky and B. Coecke: A categorical semantics of quantum protocols, arXiv:quant-ph/0402130

    Google Scholar 

  45. M.F. Atiyah: The Geometry and Physics of Knots (Cambridge University Press, Cambridge 1990)

    Book  MATH  Google Scholar 

  46. E. Witten: Quantum field Theory and the Jones Polynomial, Commun. Math. Phys. 121, 351–399 (1989)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  47. C. N. Yang: Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett. 19, 1312 (1967)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  48. T. Kohno: Conformal field theory and topology, AMS Translations of Mathematical Monographs, 210 (1998)

    Google Scholar 

  49. L. Crane: 2-d physics and 3-d topology, Comm. Math. Phys. 135, 615–640 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  50. G. Moore and N. Seiberg: Classical and quantum conformal field theory, Comm. Math. Phys. 123, 177–254 (1989)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  51. A. Ashtekar, C. Rovelli and L. Smolin: Weaving a classical geometry with quantum threads, Phys. Rev. Lett. 69, 237 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  52. A. Ashetekar and J. Lewandowski: Quantum theory of geometry I: Area operators, Class. Quant. Grav. 14, A55–A81 (1997)

    Article  ADS  Google Scholar 

  53. M. Freedman: A magnetic model with a possible Chern-Simons phase, Comm. Math. Phys. 234, 129–183 (2003), arXiv:quant-ph/0110060v1

    Article  MATH  ADS  MathSciNet  Google Scholar 

  54. M. Freedman: Topological Views on Computational Complexity, Documenta Mathematica – Extra Volume (ICM, 1998) pp. 453–464

    Google Scholar 

  55. M. Freedman, M. Larsen and Z. Wang: A modular functor which is universal for quantum computation, Comm. Math. Phys. 227, 605–622, arXiv:quant-ph/0001108v2

    Google Scholar 

  56. M. H. Freedman, A. Kitaev and Z. Wang: Simulation of topological field theories by quantum computers, Commun. Math. Phys. 227, 587–603 (2002), arXiv:quant-ph/0001071

    Article  MATH  ADS  MathSciNet  Google Scholar 

  57. M. Freedman: Quantum computation and the localization of modular functors, Found. Comp. Math. 1, 183–204 (2001), arXiv:quant-ph/0003128

    MATH  Google Scholar 

  58. A. Marzuoli and M. Rasetti: Spin network quantum simulator, Phys. Lett. A 306, 79–87 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  59. S. Garnerone, A. Marzuoli and M. Rasetti: Quantum automata, braid group and link polynomials, Quant. Inf. Comp. 7, 479–503 (2007), arXiv:quant-ph/0601169

    MATH  MathSciNet  Google Scholar 

  60. R. Penrose: Angular momentum: An approach to Combinatorial Spacetime. In: Quantum Theory and Beyond, ed T. Bastin (Cambridge University Press, Cambridge 1969)

    Google Scholar 

  61. A. Kitaev: Anyons in an exactly solved model and beyond, Ann. Phys. 321, 2–111 (2006), arXiv:cond-mat/0506438

    Article  MATH  ADS  MathSciNet  Google Scholar 

  62. Preskill, J.: Topological Computing for Beginners, (slide presentation), Lect. Notes Phys. 219, – Quantum Computation (Chap. 9). http://www.iqi.caltech.edu/preskill/ph219

  63. G. Spencer–Brown: Laws of Form (George Allen and Unwin Ltd., London 1969)

    Google Scholar 

  64. L. H. Kauffman: An invariant of regular isotopy, Trans. Amer. Math. Soc. 318, 417–471 (1990)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kauffman, L., Lomonaco, S. (2009). Topology and Quantum Computing. In: Buchleitner, A., Viviescas, C., Tiersch, M. (eds) Entanglement and Decoherence. Lecture Notes in Physics, vol 768. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88169-8_3

Download citation

Publish with us

Policies and ethics