Skip to main content

Status and Expectation of MSCs Therapy

  • Chapter
Mesenchymal Stem Cells for the Heart

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

  • 446 Accesses

Abstract

MSCs therapy for cardiovascular diseases: beginning or end of the road? As our understanding of stem-cell behavior rapidly increases, more and more reports suggest that use of MSCs therapy will extend well beyond regenerative medicine in the near future. In this chapter, we also provide an outline of the rationale and status of stem-cell-based treatments for cardiovascular diseases, and we discuss prospects for clinical implementation and the factors crucial for maintaining momentum towards this goal.

Recently, China Multicenter Collaborative Studies of Cardiovascular Epidemiology (CMCSCE) has published findings to show that cardiovascular disease is the overwhelming cause of death for both men and women, with strokes accounting for over 40% of deaths in China (Liu, 2007). With rapid socioeconomic progress, coronary heart disease (CHD) and heart failure continue to be significant burdens on healthcare systems. Therefore, any new treatment modality that benefits patients suffering from heart failure has the potential to result in a dramatic improvement in health and substantial cost savings for the community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Latif A, Bolli R, Tleyjeh IM, Montori VM, Perin EC, Hornung CA, Zuba-Surma EK, Al-Mallah M, Dawn B (2007) Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med, 167(10):989–997

    Article  Google Scholar 

  • Assmus B, Honold J, Schächinger V, Britten MB, Fischer-Rasokat U, Lehmann R, Teupe C, Pistorius K, Martin H, Abolmaali ND, Tonn T, Dimmeler S, Zeiher AM (2006) Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med, 355(12):1222–1232

    Article  Google Scholar 

  • Bartunek J, Vanderheyden M, Vandekerckhove B, Mansour S, De Bruyne B, De Bondt P, Van Haute I, Lootens N, Heyndrickx G, Wijns W (2005) Intracoronary injection of CD133 positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety. Circulation, 112(9 Suppl):I178–I183

    Google Scholar 

  • Boyle AJ, Schulman SP, Hare JM, Oettgen P (2006) Is stem cell therapy ready for patients? Stem cell therapy for cardiac repair: ready for the next step. Circulation, 114(4):339–352

    Article  Google Scholar 

  • Calabr P, Yeh ET (2005) The pleiotropic effects of statins. Curr Opin Cardiol, 20(6):541–546

    Article  Google Scholar 

  • Chen SL, Fang WW, Ye F, Liu YH, Qian J, Shan SJ, Zhang JJ, Chunhua RZ, Liao LM, Lin S, Sun JP (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol, 94(1):92–95

    Article  Google Scholar 

  • Erbs S, Linke A, Adams V, Lenk K, Thiele H, Diederich KW, Emmrich F, Kluge R, Kendziorra K, Sabri O, Schuler G, Hambrecht R (2005) Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: first randomized and placebo-controlled study. Circ Res, 97(8):756–762

    Article  Google Scholar 

  • Faggiotto A, Paoletti R (1999) State-of-the-Art lecture. Statins and blockers of the renin-angiotensin system: vascular protection beyond their primary mode of action. Hypertension, 34:987–996

    Google Scholar 

  • Gnecchi M, He H, Liang OD, Melo LG, Morello F, Mu H, Noiseux N, Zhang L, Pratt RE, Ingwall JS, Dzau VJ (2005) Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med, 11:367–368

    Article  Google Scholar 

  • Gruntzig A, Schneider HJ (1977) The percutaneous dilatation of chronic coronary stenoses-experiments and morphology. Schweiz Med Wochenschr, 107(44):1588

    Google Scholar 

  • Gruntzig A (1978) Transluminal dilatation of coronary artery stenosis. Lancet, 311:263

    Article  Google Scholar 

  • Gruntzig AR, Senning A, Siegenthaler WE (1979) Nonoperative dilatation of coronary-artery stenosis: percutaneous transluminal coronary angioplasty. N Engl J Med, 301:61–68

    Article  Google Scholar 

  • Hendrikx M, Hensen K, Clijsters C, Jongen H, Koninckx R, Bijnens E, Ingels M, Jacobs A, Geukens R, Dendale P, Vijgen J, Dilling D, Steels P, Mees U, Rummens JL (2006) Recovery of regional but not global contractile function by the direct intramyocardial autologous bone marrow transplantation: results from a randomized controlled clinical trial. Circulation, 114(1 Suppl):I101–107

    Google Scholar 

  • Hristov M, Heussen N, Schober A, Weber C (2006) Intracoronary infusion of autologous bone marrow cells and left ventricular function after acute myocardial infarction: a meta-analysis. J Cell Mol Med, 10(3):727–733

    Article  Google Scholar 

  • Huang RC, Yao K, Zou YZ, Ge L, Qian JY, Yang J, Yang S, Niu YH, Li YL, Zhang YQ, Zhang F, Xu SK, Zhang SH, Sun AJ, Ge JB (2006) Long term follow-up on emergent intracoronary autologous bone marrow mononuclear cell transplantation for acute inferior-wall myocardial infarction. Chin J Med, 86(16):1107–1110

    Google Scholar 

  • Janssens S, Dubois C, Bogaert J, Theunissen K, Deroose C, Desmet W, Kalantzi M, Herbots L, Sinnaeve P, Dens J, Maertens J, Rademakers F, Dymarkowski S, Gheysens O, Van Cleemput J, Bormans G, Nuyts J, Belmans A, Mortelmans L, Boogaerts M, Van de Werf F (2006) Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet, 367(9505):113–121

    Article  Google Scholar 

  • Kang WJ, Kang HJ, Kim HS, Chung JK, Lee MC, Lee DS (2006) Tissue distribution of 18F-FDG-labeled peripheral hematopoietic stem cells after intracoronary administration in patients with myocardial infarction. J Nucl Med, 47(8):1295–1301

    Google Scholar 

  • Katritsis DG, Sotiropoulou PA, Karvouni E, Karabinos I, Korovesis S, Perez SA, Voridis EM, Papamichail M (2005) Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium. Catheter Cardiovasc Interv Jul, 65(3):321–329

    Article  Google Scholar 

  • Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med, 7(4):430–436

    Article  Google Scholar 

  • Li ZQ, Zhang M, Jin YZ, Zhang WW, Liu Y, Yuan L, Cui LJ, Liu XZ, Yu X, Hu TS (2006) Safety and efficacy of intracoronary transplantation of G-CSF mobilized autologous peripheral blood stem cells in patients with acute myocardial infarction. zhonghua Xin Xue Guan Bing za zhi, 34(2):99–102

    Google Scholar 

  • Liu L (2007) Cardiovascular disease in China. Biochem Cell Biol. 85:157–163

    Article  Google Scholar 

  • Lunde K, Solheim S, Aakhus S, Arnesen H, Abdelnoor M, Egeland T, Endresen K, Ilebekk A, Mangschau A, Fjeld JG, Smith HJ, Taraldsrud E, Grgaard HK, Bjrnerheim R, Brekke M, Mller C, Hopp E, Ragnarsson A, Brinchmann JE, Forfang K (2006) Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med, 355(12):1199–1209

    Article  Google Scholar 

  • Meyer GP, Wollert KC, Lotz J, Steffens J, Lippolt P, Fichtner S, Hecker H, Schaefer A, Arseniev L, Hertenstein B, Ganser A, Drexler H (2006) Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation, 113(10):1287–1294

    Article  Google Scholar 

  • Mills WR, Mal N, Kiedrowski MJ, Unger R, Forudi F, Popovic ZB, Penn MS, Laurita KR (2007) Stem cell therapy enhances electrical viability in myocardial infarction. J Mol Cell Cardiol, 42(2):304–314

    Article  Google Scholar 

  • Mocini D, Staibano M, Mele L, Giannantoni P, Menichella G, Colivicchi F, Sordini P, Salera P, Tubaro M, Santini M (2006) Autologous bone marrow mononuclear cell transplantation in patients undergoing coronary artery bypass grafting. Am Heart J, 151(1):192–197

    Article  Google Scholar 

  • Moore KA, Lemischka IR (2006) Stem cells and their niches. Science, 311:1880–1885

    Article  Google Scholar 

  • Morice MC, Serruys PW, Sousa JE, Fajadet J, Ban Hayashi E, Perin M, Colombo A, Schuler G, Barragan P, Guagliumi G, Molnr F, Falotico R; RAVEL Study Group (2002) Randomized study with the sirolimus-coated bx velocity balloon-expandable stent in the treatment of patients with de novo native coronary artery lesions. A randomized comparison of a sirolimuseluting stent with a standard stent for coronary revascularization. N Engl J Med, 346:1773–1780

    Article  Google Scholar 

  • Nygren JM, Jovinge S, Breitbach M, Swn P, Rll W, Hescheler J, Taneera J, Fleischmann BK, Jacobsen SE (2004) Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not trans-differentiation. Nat Med, 10: 494–501

    Article  Google Scholar 

  • Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodin DM, Leri A, Anversa P (2001) Bone marrow cells regenerate infarcted myocardium. Nature, 410:701–705

    Article  Google Scholar 

  • Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Silva GV, Mesquita CT, Belm L, Vaughn WK, Rangel FO, Assad JA, Carvalho AC, Branco RV, Rossi MI, Dohmann HJ, Willerson JT (2004) Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation, 110(11 Suppl 1):II213–218

    Google Scholar 

  • Ruan W, Pan CZ, Huang GQ, Li YL, Ge JB, Shu XH (2005) Assessment of left ventricular segmental function after autologous bone marrow stem cells transplantation in patients with acute myocardial infarction by tissue tracking and strain imaging. Chin Med J (Engl), 118(14):1175–1181

    Google Scholar 

  • Schuster MD, Kocher AA, Seki T, Martens TP, Xiang G, Homma S, Itescu S (2004) Myocardial neovascularization by bone marrow angioblasts results in cardiomyocyte regeneration. Am J Physiol Heart Circ Physiol, 287(2):H525–532

    Article  Google Scholar 

  • Schächinger V, Erbs S, Elssser A, Haberbosch W, Hambrecht R, Hlschermann H, Yu J, Corti R, Mathey DG, Hamm CW, Sselbeck T, Assmus B, Tonn T, Dimmeler S, Zeiher AM; REPAIR-AMI Investigators (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med, 355(12):1210–1221

    Article  Google Scholar 

  • Sousa JE, Costa MA, Abizaid AC, Rensing BJ, Abizaid AS, Tanajura LF, Kozuma K, Van Langenhove G, Sousa AG, Falotico R, Jaeger J, Popma JJ, Serruys PW (2001) Sustained suppression of neointimal proliferation by sirolimuseluting stents: one-year angiographic and intravascular ultrasound follow-up. Circulation, 104(17):2007–2011

    Article  Google Scholar 

  • Strauer BE, Brehm M, Zeus T, Kstering M, Hernandez A, Sorg RV, Kgler G, Wernet P (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation, 106(15):1913–1918

    Article  Google Scholar 

  • Strauer BE, Brehm M, Zeus T, Bartsch T, Schannwell C, Antke C, Sorg RV, Kgler G, Wernet P, Mller HW, Kstering M (2005) Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study. J Am Coll Cardiol 46(9):1651–1658

    Article  Google Scholar 

  • Wang JA, Luo RH, Zhang X, Xie XJ, Hu XY, He AN, Chen J, Li JH (2006) Bone marrow mesenchymal stem cell transplantation combined with perindopril treatment attenuates infarction remodelling in a rat model of acute myocardial infarction. J Zhejiang Univ Sci B, 7(8):641–647

    Article  Google Scholar 

  • Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, Fichtner S, Korte T, Hornig B, Messinger D, Arseniev L, Hertenstein B, Ganser A, Drexler H (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet, 364(9429):141–148

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Zhejiang University Press, Hangzhou and Springer-Verlag GmbH Berlin

About this chapter

Cite this chapter

Wang, S. (2009). Status and Expectation of MSCs Therapy. In: Wang, J., Xie, X. (eds) Mesenchymal Stem Cells for the Heart. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88150-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88150-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88149-0

  • Online ISBN: 978-3-540-88150-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics