Skip to main content

Biological Characteristics of MSCs

  • Chapter
Book cover Mesenchymal Stem Cells for the Heart

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

  • 493 Accesses

Abstract

Recent advancements in tissue engineering and regenerative medicine have highlighted MSCs as a potential source of cells which would differentiate to a variety of tissue tailored to individual needs. This chapter briefly outlines the current status of MSCs, focusing on their biological characteristics and potential for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105(4):1815–1822

    Article  Google Scholar 

  • Augello A, Tasso R, Negrini SM, Amateis A, Indiveri F, Cancedda R, Pennesi G (2005) Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol, 35(5):1482–1490

    Article  Google Scholar 

  • Augello A, Tasso R, Negrini SM, Cancedda R, Pennesi G (2007) Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheum, 56(4):1175–1186

    Article  Google Scholar 

  • Aussmus B, Schächinger V, Teupe C, Britten M, Lehmann R, Dóbert N, Grunwald F, Aicher A, Urbich C, Martin H, Hoelzer D, Dimmeler S, Zeiher AM (2002) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation, 106(24):3009–3017

    Article  Google Scholar 

  • Ball SG, Shuttleworth CA, Kielty CM (2007) Mesenchymal stem cells and neovascularization: role of platelet-derived growth factor receptors. J Cell Mol Med, 11(5):1012–1030

    Article  Google Scholar 

  • Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Lin YJ, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol, 18:767–811

    Article  Google Scholar 

  • Barry FP, Boynton RE, Haynesworth S, Murphy JM, Zaia J (1999) The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105). Biochem Biophys Res Commun, 265(1):134–139

    Article  Google Scholar 

  • Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, Hardy W, Devine S, Ucker D, Deans R, Moseley A, Hoffman R (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol, 30(1):42–48

    Article  Google Scholar 

  • Bartunek J, Croissant JD, Wijns W, Gofflot S, de Lavareille A, Vanderheyden M, Kaluzhny Y, Mazouz N, Willemsen P, Penicka M, Mathieu M, Homsy C, De Bruyne B, McEntee K, Lee IW, Heyndrickx GR (2007) Pretreatment of adult bone marrow mesenchymal stem cells with cardiomyogenic growth factors and repair of the chronically infarcted myocardium. Am J Physiol Heart Circ Physiol, 292(2):H 1095–1104

    Article  Google Scholar 

  • Baxter MA, Wynn RF, Jowitt SN, Wraith JE, Fairbairn LJ, Bellantuono I (2004) Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells, 22(5):675–682

    Article  Google Scholar 

  • Beyth S, Borovsky Z, Mevorach D, Liebergall M, Gazit Z, Aslan H, Galun E, Rachmilewitz J (2005) Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood, 105(5):2214–2219

    Article  Google Scholar 

  • Biron CA (1997) Activation and function of natural killer cell responses during viral infections. Curr Opin Immunol, 9(1):24–34

    Article  Google Scholar 

  • Black IB, Woodbury D (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res, 61(4):364–370

    Article  Google Scholar 

  • Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A, Nikbin B (2006) Aging of mesenchymal stem cell in vitro. BMC Cell Biol, 7:14

    Article  Google Scholar 

  • Breitbach M, Bostani T, Roell W, Xia Y, Dewald O, Nygren JM, Fries JW, Tiemann K, Bohlen H, Hescheler J, Welz A, Bloch W, Jacobsen SE, Fleischmann BK (2007) Potential risks of bone marrow cell transplantation into infarcted hearts. Blood, 110(4):1362–1369

    Article  Google Scholar 

  • Caddick J, Kingham PJ, Gardiner NJ, Wiberg M, Terenghi G (2006) Phenotypic and functional characteristics of mesenchymal stem cells differentiated along a Schwann cell lineage. Glia, 54(8):840–849

    Article  Google Scholar 

  • Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver and bone marrow. Blood, 98(8):2396–2402

    Article  Google Scholar 

  • Chan JL, Tang KC, Patel AP, Bonilla LM, Pierobon N, Ponzio NM, Rameshwar P (2006) Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-gamma. Blood, 107(12):4817–4824

    Article  Google Scholar 

  • Chang MG, Tung L, Sekar RB, Chang CY, Cysyk J, Dong PH, Marban E, Abraham MR (2006) Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model. Circulation, 113(15):1832–1841

    Article  Google Scholar 

  • Chen M, Fan ZC, Liu XQ, Zhang L, Rao L, Yang Q, Huang DJ (2005) Changes of myocardial electrophysiology after stem cell transplantation. Chin J Cardiac Pacing Electrophysiol, 19(2):124–127

    Google Scholar 

  • Chen L, Zhang W, Yue H, Han Q, Chen B, Shi M, Li J, Li B, You S, Shi Y, Zhao RC (2007) Effects of human mesenchymal stem cells on the differentiation of dendritic cells from CD34+ cells. Stem Cells Dev, 16(5):719–732

    Article  Google Scholar 

  • Chien CC, Yen BL, Lee FK, Lai TH, Chen YC, Chan SH, Huang HI (2004) In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology, 40(6):1275–1284

    Article  Google Scholar 

  • Chiou MY, Xu, Longaker MT (2006) Mitogenic and chondrogenic effects of fibroblast growth factor-2 in adipose-derived mesenchymal cells. Biochem Biophys Res Commun, 343(2):644–652

    Article  Google Scholar 

  • Cohen IS, Rosen AB, Gaudette GR (2007) A Caveat Emptor for myocardial regeneration: mechanical without electrical recovery will not suffice. J Mol Cell Cardiol, 42(2):285–288

    Article  Google Scholar 

  • Cong YS, Wright WE, Shay JW (2002) Human telomerase and its regulation. Microbiol Mol Biol Rev, 66(3):407–425

    Article  Google Scholar 

  • Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, Risso M, Gualandi F, Mancardi GL, Pistoia V, Uccelli A (2006) Human mesenchymal stem cells modulate B-cell functions. Blood, 107(1):367–372

    Article  Google Scholar 

  • Covas DT, Slufi JL, Silva AR, Orellana MD (2003) Isolation and culture of umbilical vein mesenchymal stem cells. Braz J Med Biol Res, 36(9):1179–1183

    Article  Google Scholar 

  • Dahse R, Fiedler W, Ernst G (1997) Telomeres and telomerase: biological and clinical importance. Clinical Chemistry 43(5):708–714

    Google Scholar 

  • De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum, 44(8):1928–1942

    Article  Google Scholar 

  • Deng W, Han Q, Liao L, You S, Deng H, Zhao RC (2005) Effects of allogeneic bone marrow-derived mesenchymal stem cells on T and B lymphocytes from BXSB mice. DNA Cell Biol, 24(7):458–463

    Article  Google Scholar 

  • Dezawa M, Kanno H, Hoshino M, Cho H, Matsumoto N, Itokazu Y, Tajima N, Yamada H, Sawada H, Ishikawa H (2004) Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest, 113(12):1701–1710

    Google Scholar 

  • Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99(10):3838–3843

    Article  Google Scholar 

  • Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, Noel D, Jorgensen C (2003) Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood, 102(10):3837–3844

    Article  Google Scholar 

  • Djouad F, Fritz V, Apparailly F, Louis-Plence P, Bony C, Sany J, Jorgensen C, Noel D (2005) Reversal of the immunosuppressive properties of mesenchymal stem cells by tumor necrosis factor alpha in collagen-induced arthritis. Arthritis Rheum, 52(5):1595–1603

    Article  Google Scholar 

  • Djouad F, Delorme B, Maurice M, Bony C, Apparailly F, Louis-Plence P, Canovas F, Charbord P, Noel D, Jorgensen C (2007) Microenvironmental changes during differentiation of mesenchymal stem cells towards chondrocytes. Arthritis Res Ther, 9(2):R33

    Article  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4):315–317

    Article  Google Scholar 

  • Eliopoulos N, Stagg J, Lejeune L, Pommey S, Galipeau J (2005) Allogeneic marrow stromal cells are immune rejected by MHC Class I-and Class II-mismatched recipient mice. Blood, 106(13):4057–4065

    Article  Google Scholar 

  • English K, Barry FP, Mahon BP (2008) Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation. Immunol Lett, 115(1):50–58

    Article  Google Scholar 

  • Erices A, Conget P, Rojas C, Minguell JJ (2002) Gp 130 activation by soluble interleukin-6 receptor/interleukin-6 enhances osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells. Exp Cell Res, 280(1):24–32

    Article  Google Scholar 

  • Falconi D, Oizumi K, Aubin JE (2007) Leukemia inhibitory factor influences the fate choice of mesenchymal progenitor cells. Stem Cells, 25(2):305–312

    Article  Google Scholar 

  • Fukuda K (2001) Development of regenerative cardiomyocytes from mesenchymal stem cells for cardiovascular tissue engineering. Artif Organs, 5(3):187–193

    Article  Google Scholar 

  • Gagari E, Rand MK, Tayari L, Vastardis H, Sharma P, Hauschka PV, Damoulis PD (2006) Expression of stem cell factor and its receptor, c-kit, in human oral mesenchymal cells. Eur J Oral Sci, 114(5):409–415

    Article  Google Scholar 

  • Galmiche MC, Koteliansky VE, Brière J, Hervé P, Charbord P (1993) Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway. Blood, 82(1):66–76

    Google Scholar 

  • Gang EJ, Jeong JA, Han S, Yan Q, Jeon CJ, Kim H (2006) In vitro endothelial potential of human UC blood-derived mesenchymal stem cells. Cytotherapy, 8(3):215–227

    Article  Google Scholar 

  • Gaustad KG, Boquest AC, Anderson BE, Gerdes AM, Collas P (2004) Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes. Biochem Biophys Res Commun, 314(2):420–427

    Article  Google Scholar 

  • Gerdoni E, Gallo B, Casazza S, Musio S, Bonanni I, Pedemonte E, Mantegazza R, Frassoni F, Mancardi G, Pedotti R, Uccedli A (2007) Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Ann Neurol, 61(3):219–227

    Article  Google Scholar 

  • Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F (2005) Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood, 105(7): 2821–2827

    Article  Google Scholar 

  • Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F, Mu H, Melo LG, Pratt RE, Ingwall JS, Dzau VJ (2006) Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. Faseb J, 20(6):661–669

    Article  Google Scholar 

  • Gojo S, Gojo N, Takeda Y, Mori T, Abe H, Kyo S, Hata J, Umezawa A (2003) In vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells. Exp Cell Res, 288(1):51–59

    Article  Google Scholar 

  • Graakjaer J, Christensen R, Kolvraa S, Serakinci N (2007) Mesenchymal stem cells with high telomerase expression do not actively restore their chromosome arm specific telomere length pattern after exposure to ionizing radiation. BMC Mol Biol, 13(7):49

    Article  Google Scholar 

  • Grinnemo KH, Mansson A, Dellgren G, Klingberg D, Wardell E, Drvota V, Tammik C, Holgersson J, Ringden O, Sylven C, Le Blanc K (2004) Xenoreactivity and engraftment of human mesenchymal stem cells transplanted into infarcted rat myocardium. J Thorac Cardiovasc Surg, 127(5):1293–1300

    Article  Google Scholar 

  • Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA, 97(25):13625–13630

    Article  Google Scholar 

  • Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM (2001) Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol, 189(1):54–63

    Article  Google Scholar 

  • Hakuno D, Fukuda K, Makino S, Konishi F, Tomita Y, Manabe T, Suzuki Y, Umezawa A, Ogawa S (2002) Bone marrow-derived regenerated cardiomyocytes (CMG Cells) express functional adrenergic and muscarinic receptors. Circulation, 105(3):380–386

    Article  Google Scholar 

  • Heubach JF, Graf EM, Leutheuser J, Bock M, Balana B, Zahanich I, Christ T, Boxberger S, Wettwer E, Ravens U (2003) Electrophysiological properties of human mesenchymal stem cells. J Physiol, 554(3):659–672

    Article  Google Scholar 

  • Honczarenko M, Le Y, Swierkowski M, Ghiran I, Glodek AM, Silberstein LE (2006) Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells, 24(4):1030–1041

    Article  Google Scholar 

  • Hoogduijn MJ, Crop MJ, Peeters AM, Van Osch GJ, Balk AH, Ijzermans JN, Weimar W, Baan CC (2007) Human heart, spleen, and perirenal fat-derived mesenchymal stem cells have immunomodulatory capacities. Stem Cells Dev, 16(4):597–604

    Article  Google Scholar 

  • in’t Anker PS, Noort WA, Scherjon SA, Kleijburg-van der kear C, Kruisselbrink AB, van Bezooijen RL, Beekhhuizen W, Willemze R, Kanhai HH, Fibbe WE (2003) Mesenchymal stem cells in human second-trimester bone marrow, liver, lung and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica, 88(8): 845–852

    Google Scholar 

  • Ip JE, Wu Y, Huang J, Zhang L, Pratt RE, Dzau VJ (2007) Mesenchymal stem cells use integrin beta1 not CXC chemokine receptor 4 for myocardial migration and engraftment. Mol Biol Cell, 18(8):2873–2882

    Article  Google Scholar 

  • Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD, Mao N (2005) Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood, 105(10):4120–4126

    Article  Google Scholar 

  • John MS (1998) Can ends justify the means? Telomeres and the mechanisms of replicative senescence and immortalization in mammalian cells. Proc Natl Acad Sci USA, 95(16):9078–9081

    Article  Google Scholar 

  • Jones EA, English A, Henshaw K, Kinsey SE, Markham AF, Emery P, McGonagle D (2004) Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis Rheum, 50(3):817–827

    Article  Google Scholar 

  • Jootar S, Pornprasertsud N, Petvises S, Rerkamnuaychoke B, Disthabanchong S, Pakakasama S, Ungkanont A, Hongeng S (2006) Bone marrow derived mesenchymal stem cells from chronic myeloid leukemia t(9;22) patients are devoid of Philadelphia chromosome and support cord blood stem cell expansion. Leuk Res, 30(12): 1493–1498

    Article  Google Scholar 

  • Jung YJ, Ju SY, Yoo ES, Cho SJ, Cho KA, Woo SY, Seoh JY, Park JW, Han HS, Ryu KH (2007) MSC-DC interactions: MSC inhibit maturation and migration of BM-derived DC. Cytotherapy, 9(5):451–458

    Article  Google Scholar 

  • Kawada H, Fujita J, Kinjo K, Matsuzaki Y, Tsuma M, Miyatake H, Muguruma Y, Tsuboi K, Itabashi Y, Ikeda Y, Ogawa S, Okano H, Hotta T, Ando K, Fukuda K (2004) Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood, 104(12):3581–3587

    Article  Google Scholar 

  • Kawano S, Shoji S, Ichinose S, Yamagata K, Tagami M, Hiraoka M (2002) Characterization of Ca2+ signaling pathways in human mesenchymal stem cells. Cell Calcium, 32(4):165–174

    Article  Google Scholar 

  • Keyser KA, Beagles KE, Kiem HP (2007) Comparison of mesenchymal stem cells from different tissues to suppress T-cell activation. Cell Transplant, 16(5):555–562

    Google Scholar 

  • Kim JA, Hong S, Lee B, Hong JW, Kwak JY, Cho S, Kim CC (2007) The inhibition of T-cells proliferation by mouse mesenchymal stem cells through the induction of p16INK 4A-cyclin D1/cdk4 and p21waf1, p27kip1-cyclin E/cdk2 pathways. Cell Immunol, 245(1):16–23

    Article  Google Scholar 

  • Klyushnenkova E, Mosca JD, Zernetkina V, Majumdar MK, Beggs KJ, Simonetti DW, Deans RJ, McIntosh KR (2005) T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J Biomed Sci, 12(1):47–57

    Article  Google Scholar 

  • Koc ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI, Lazarus HM (2000) Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol, 18(2):307–316

    Google Scholar 

  • Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, Dazzi F (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood, 101(9):3722–3729

    Article  Google Scholar 

  • Krampera M, Pasini A, Rigo A, Scupoli MT, Tecchio C, Malpeli G, Scarpa A, Dazzi F, Pizzolo G, Vinante F (2005) HB-EGF/HER-1 signaling in bone marrow mesenchymal stem cells: inducing cell expansion and reversibly preventing multilineage differentiation. Blood, 106(1):59–66

    Article  Google Scholar 

  • Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A, Santarlasci V, Mazzinghi B, Pizzolo G, Vinante F, Romagnani P, Maggi E, Romagnani S, Annunziato F (2006) Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells, 24(2):386–398

    Article  Google Scholar 

  • Krampera M, Marconi S, Pasini A, Gali M, Rigotti G, Mosna F, Tinelli M, Lovato L, Anghileri E, Andreini A, Pizzolo G, Sbarbati A, Bonetti B (2007a) Induction of neural-like differentiation in human mesenchymal stem cells derived from bone marrow, fat, spleen and thymus. Bone, 40(2): 382–390

    Article  Google Scholar 

  • Krampera M, Sartoris S, Liotta F, Pasini A, Angeli R, Cosmi L, Andreini A, Mosna F, Bonetti B, Rebellato E, Testi MG, Frosali F, Pizzolo G, Tridente G, Maggi E, Romagnani S, Annunziato F (2007b) Immune regulation by mesenchymal stem cells derived from adult spleen and thymus. Stem Cells Dev, 16(5):797–810

    Article  Google Scholar 

  • Kunter U, Rong S, Boor P, Eitner F, Müller-Newen G, Djuric Z, van Roeyen CR, Konieczny A, Ostendorf T, Villa L, Milovanceva-Popovska M, Kerjaschki D, Floege J (2007b) Mesenchymal stem cells prevent progressive experimental renal failure but maldifferentiate into glomerular adipocytes. J Am Soc Nephrol, 18(6):1754–1764

    Article  Google Scholar 

  • Kuznetsov SA, Mankani MH, Gronthos S, Satomura K, Bianco P, Robey PG (2001) Circulating skeletal stem cells. J Cell Biol, 153(5):1133–1140

    Article  Google Scholar 

  • Lazarus HM, Haynesworth SE, Gerson SL, Rosenthal NS, Caplan AI (1995) Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant, 16(4): 557–564

    Google Scholar 

  • Lazarus HM, Koc ON, Devine SM, Curtin P, Maziarz RT, Holland HK, Shpall EJ, McCarthy P, Atkinson K, Cooper BW, Gerson SL, Laughlin MJ, Loberiza FR, Jr, Moseley AB, Bacigalupo A (2005) Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant, 11(5):389–398

    Article  Google Scholar 

  • Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O (2003) HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol, 31(10):890–896

    Article  Google Scholar 

  • Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M, Ringden O (2004a) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet, 363(9419):1439–1441

    Article  Google Scholar 

  • Le Blanc K, Rasmusson I, Gotherstrom C, Seidel C, Sundberg B, Sundin M, Rosendahl K, Tammik C, Ringden O (2004b) Mesenchymal stem cells inhibit the expression of CD25 (interleukin-2 receptor) and CD38 on phytohaemagglutinin-activated lymphocytes. Scand J Immunol, 60(3):307–315

    Article  Google Scholar 

  • Leri A, Kajstura J, Anversa P (2005) Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev. 85(4):1373–1416

    Article  Google Scholar 

  • Li C, Zhang W, Jiang X, Mao N (2007) Human-placenta-derived mesenchymal stem cells inhibit proliferation and function of allogeneic immune cells. Cell Tissue Res, 330(3):437–446

    Article  Google Scholar 

  • Li GR, Sun HY, Deng XL, Lau CP (2005) Characterization of ionic currents in human mesenchymal stem cells from bone marrow. Stem Cells, 23(3):371–382

    Article  Google Scholar 

  • Li TS, Hamano K, Suzuki K, Ito H, Zempo N, Matsuzaki M (2002) Improved angiogenic potency by implantation of ex vivo hypoxia prestimulated bone marrow cells in rats. Am J Physiol Heart Circ Physiol, 283(2):H468–473

    Google Scholar 

  • Lisignoli G, Cristino S, Piacentini A, Cavallo C, Caplan AI, Facchini A (2006) Hyaluronan-based polymer scaffold modulates the expression of inflammatory and degradative factors in mesenchymal stem cells: Involvement of Cd44 and Cd54. J Cell Physiol, 207(2):364–373

    Article  Google Scholar 

  • Maccario R, Podesta M, Moretta A, Cometa A, Comoli P, Montagna D, Daudt L, Ibatici A, Piaggio G, Pozzi S, Frassoni F, Locatelli F (2005) Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica, 90(4):516–525

    Google Scholar 

  • Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF (1998) Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng, 4(4):415–428

    Article  Google Scholar 

  • Maitra B, Szekely E, Gjini K, Laughlin MJ, Dennis J, Haynesworth SE, Koc ON (2004) Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone Marrow Transplant, 33(6):597–604

    Article  Google Scholar 

  • Majumdar MK, Keane-Moore M, Buyaner D, Hardy WB, Moorman MA, McIntosh KR, Mosca JD (2003) Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci, 10(2):228–241

    Article  Google Scholar 

  • Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, Sano M, Takahashi T, Hori S, Abe H, Hata J, Umezawa A, Ogawa S (1999) Cardiomycotes can be generated from marrow stromal cells in vitro. J Clin Invest, 103(5):697–705

    Article  Google Scholar 

  • Mareschi K, Novara M, Rustichelli D, Ferrero I, Guido D, Carbone E, Medico E, Madon E, Vercelli A, Fagioli F (2006) Neural differentiation of human mesenchymal stem cells: Evidence for expression of neural markers and eag K+ channel types. Exp Hematol, 34(11):1563–1572

    Article  Google Scholar 

  • Meeker AK, Hicks JL, Iacobuzio-Donahue CA, Montgomery EA, Westra WH, Chan TY, Ronnett BM, De Marzo AM (2004) Telomere length abnormalities occur early in the initiation of epithelial carcinogenesis. Clinical Cancer Research, 10(10):3317–3326

    Article  Google Scholar 

  • Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D (2004) Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood, 103(12):4619–4621

    Article  Google Scholar 

  • Mills WR, Mal N, Kiedrowski MJ, Unger R, Forudi F, Popovic ZB, Penn MS, Laurita KR (2007) Stem cell therapy enhances electrical viability in myocardial infarction. J Mol Cell Cardiol, 42(2):304–314

    Article  Google Scholar 

  • Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA, 100(10):5807–5812

    Article  Google Scholar 

  • Moon HJ, Jeon ES, Kim YM, Lee MJ, Oh CK, Kim JH (2007) Sphingosylphosphorylcholine stimulates expression of fibronectin through TGF-betal-Smad-dependent mechanism in human mesenchymal stem cells. Int J Biochem Cell Biol, 39(6):1224–1234

    Article  Google Scholar 

  • Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL (1999) Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med, 189(9):1363–1372

    Article  Google Scholar 

  • Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, Pasumarthi KB, Virag JI, Bartelmez SH, Poppa V, Bradford G, Dowell JD, Williams DA, Field LJ (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature, 428(6983):664–668

    Article  Google Scholar 

  • Nagaya N, Kangawa K, Itoh T, Iwase T, Murakami S, Miyahara Y, Fujii T, Uematsu M, Ohgushi H, Yamagishi M, Tokudome T, Mori H, Miyatake K, Kitamura S (2005) Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation, 112(8):1128–1135

    Article  Google Scholar 

  • Nasef A, Mathieu N, Chapel A, Frick J, Francois S, Mazurier C, Boutarfa A, Bouchet S, Gorin NC, Thierry D, Fouillard L (2007) Immunosuppressive effects of mesenchymal stem cells: involvement of HLA-G. Transplantation, 84(2):231–237

    Article  Google Scholar 

  • Nauta AJ, Westerhuis G, Kruisselbrink AB, Lurvink EG, Willemze R, Fibbe WE (2006) Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood, 108(6): 2114–2120

    Article  Google Scholar 

  • Niemeyer P, Kornacker M, Mehlhorn A, Seckinger A, Vohrer J, Schmal H, Kasten P, Eckstein V, Sudkamp NP, Krause U (2007) Comparison of immunological properties of bone marrow stromal cells and adipose tissue-derived stem cells before and after osteogenic differentiation in vitro. Tissue Eng, 13(1):111–121

    Article  Google Scholar 

  • Noiseux N, Gnecchi M, Lopez-Ilasaca M, Zhang L, Solomon SD, Deb A, Dzau VJ, Pratt RE (2006) Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther, 14(6): 840–850

    Article  Google Scholar 

  • Norman ES, Ronald AD (2004) Telomeres, stem cells, senescence, and cancer. J Clin Invest, 113(2):160–168

    Google Scholar 

  • Orlic D, Kajstura J, Chimenti S, Bodine DM, Leri A, Anversa P (2001a) Bone marrow cells regenerate infarcted myocardium. Nature, 410(6829):701–705

    Article  Google Scholar 

  • Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001b) Mobilized bone marrow cells repair the infarcted heart improving function and survival. Proc Natl Acad Sci USA, 98: 10344–10349

    Article  Google Scholar 

  • Ortiz LA, Dutreil M, Fattman C, Pandey AC, Torres G, Go K, Phinney DG (2007) Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA, 104(26): 11002–11007

    Article  Google Scholar 

  • Otaki S, Ueshima S, Shiraishi K, Sugiyama K, Hamada S, Yorimoto M, Matsuo O (2007) Mesenchymal progenitor cells in adult human dental pulp and their ability to form bone when transplanted into immunocompromised mice. Cell Biol Int, 31(1):1191–1197

    Article  Google Scholar 

  • Peiffer I, Eid P, Barbet R, Li ML, Oostendorp RA, Haydont V, Monier MN, Milon L, Fortunel N, Charbord P, Tovey M, Hatzfeld J, Hatzfeld A (2007) A sub-population of high proliferative potential-quiescent human mesenchymal stem cells is under the reversible control of interferon alpha/beta. Leukemia, 21(4):714–724

    Article  Google Scholar 

  • Pijnappels DA, Schalij MJ, van Tuyn JV, Ypey DL, de Vries AA, van der Wall EE, van der Laarse A, Atsma DE (2006) Progressive increase in conduction velocity across human mesenchymal stem cells is mediated by enhanced electrical coupling. Cardiovas Res, 72(2): 282–291

    Article  Google Scholar 

  • Poncelet AJ, Vercruysse J, Saliez A, Gianello P (2007) Although pig allogeneic mesenchymal stem cells are not immunogenic in vitro, intracardiac injection elicits an immune response in vivo. Transplantation, 83(6):783–790

    Article  Google Scholar 

  • Potapova I, Plotnikov A, Lu ZJ, Danilo P, Valiunas V, Qu JH, Doronin S, Zuckerman J, Shlapakova IN, Gao JY, Pan ZM, Herron AJ, Rovinson RB, Brink PR, Rosen MR, Cohen IS (2004) Human mesenchymal stem cells as gene delivery system to create cardiac pacemakers. Cir Res, 94(7):952–959

    Article  Google Scholar 

  • Prevosto C, Zancolli M, Canevali P, Zocchi MR, Poggi A (2007) Generation of CD4+ or CD8+ regulatory T cells upon mesenchymal stem cell-lymphocyte interaction. Haematologica, 92(7):881–888

    Article  Google Scholar 

  • Ren XQ, Pu JL, Zhang S, Jiang YH, Wu GZ, Meng L, Wang FZ (2005) Cardiac atrioventricular conduct function improved by autologous transplantation of mesenchymal stem cells in canine atrioventricular conduct block model. Chin J Cardiac Pacing Electrophysiol, 19(1):48–52

    Google Scholar 

  • Risbud MV, Albert TJ, Guttapalli A, Vresilovic EJ, Hillibrand AS, Vaccaro AR, Shapiro IM (2004) Differentiation of mesenchymal stem cells towards a nucleus pulposus-like phenotype in vitro: implications for cell-based transplantation therapy. Spine, 29(23):2627–2632

    Article  Google Scholar 

  • Roura S, Farré J, Soler-Botija C, Llach A, Hove-Madsen L, Cairó J, Gòdia F, Cinca J, Bayes-Genis A (2006) Effect of aging on the pluripotential capacity of human CD105+ mesenchymal stem cells. Eur J Heart Fail, 8(6):555–563

    Article  Google Scholar 

  • Rubio D, Garcia-Castro J, Martín MC, de la Fuente R, Cigudosa JC, Lloyd A, Bernad A (2005) Spontaneous Human Adult Stem Cell Transformation. Cancer Research, 65(11): 3035–3039

    Google Scholar 

  • Saito T, Kuang JQ, Bittira B, Al-Khaldi A, Chiu RC (2002) Xenotransplant cardiac chimera: immune tolerance of adult stem cells. Ann Thorac Surg, 74(1):19–24

    Article  Google Scholar 

  • Sato K, Ozaki K, Oh I, Meguro A, Hatanaka K, Nagai T, Muroi K, Ozawa K (2007) Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood, 109(1):228–234

    Article  Google Scholar 

  • Schächinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Holschermann H, Yu J, Corti R, Mathey DG, Hamm CW, Suselbeck T, Assmus B, Tonn T, Dimmeler S, Zeiher AM (2006) Improved clinical outcome after intracoromary administration of bone marrow derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur Heart J, 27(23):2775–2783

    Article  Google Scholar 

  • Schwartz RH (2003) T cell anergy. Ann Rev Immunol, 21:305–334

    Article  Google Scholar 

  • Shake JG, Gruber PJ, Baumgartner WA, Senechal G, Meyers J, Redmond JM, Pittenger MF, Martin BJ (2002) Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg, 73(6): 1919–1925

    Article  Google Scholar 

  • Shay JW, Wright WE (2005) Senescence and immortalization: role of telomeres and telomerase. Carcinogenesis, 26(5):867–874

    Article  Google Scholar 

  • Shujia J, Haider HK, Idris NM, Lu G, Ashraf M (2008) Stable therapeutic effects of mesenchymal stem cell-based multiple gene delivery for cardiac repair. Cardiovasc Res, 77(3):525–533

    Article  Google Scholar 

  • Silva WA Jr, Covas DT, Panepucci RA, Proto-Siqueira R, Siufi JL, Zanette DL, Santos AR, Zago MA (2003) The profile of gene expression of human marrow mesenchymal stem cells. Stem Cells, 21(6):661–669

    Article  Google Scholar 

  • Silva GV, Litovsky S, Assad JA, Sousa AL, Martin BJ, Vela D, Coulter SC, Lin J, Ober J, Vaughn WK, Branco RV, Oliveira EM, He R, Geng YJ, Willerson JT, Perin EC (2005) Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation, 111(2):150–156

    Article  Google Scholar 

  • Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M (2006) Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells, 24(1):74–85

    Article  Google Scholar 

  • Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L (2006) Mesenchymal stem cell-natural killer cell interactions, evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood, 107(4):1484–1490

    Article  Google Scholar 

  • Susan MB, John PM (2006) Telomeres, chromosome instability and cancer. Nucleic Acids Research, 34(8):2408–2417

    Article  Google Scholar 

  • Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105(1):93–98

    Article  Google Scholar 

  • Tomita S, Li RK, Weisel RD, Mickle DA, Kim EJ, Sakai T, Jia ZQ (1999) Autologous transplantation of bone marrow cells improves damaged heart function. Circulation, 100(19 Suppl):II247–256

    Google Scholar 

  • Tse HF, Xue T, Lau CP, Siu CW, Wang K, Zhang QY, Tomaselli GF, Akar FG, Li RA (2006) Bioartificial sinus node constructed via in vivo gene transfer of an engineered pacemaker HCN Channel reduces the dependence on electronic pacemaker in a sick-sinus syndrome model. Circulation, 114(10):1000–1011

    Article  Google Scholar 

  • Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC (2003) Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation, 75(3):389–397

    Article  Google Scholar 

  • Uemura R, Xu M, Ahmad N, Ashraf M (2006) Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res, 98(11):1414–1421

    Article  Google Scholar 

  • Urbán VS, Kiss J, Kovács J, Gócza E, Vas V, Monostori E, Uher F (2008) Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes. Stem Cells, 26(1):244–253

    Article  Google Scholar 

  • Ventura C, Cantoni S, Bianchi F, Lionetti V, Cavallini C, Scarlata I, Foroni L, Maioli M, Bonsi L, Alviano F, Fossati V, Bagnara GP, Pasquinelli G, Recchia FA, Perbellini A (2007) Hyaluronan mixed esters of butyric and retinoic Acid drive cardiac and endothelial fate in term placenta human mesenchymal stem cells and enhance cardiac repair in infarcted rat hearts. J Biol Chem, 282(19):14243–14252

    Article  Google Scholar 

  • van Laar JM, Tyndall A (2006) Adult stem cells in the treatment of autoimmune diseases. Rheumatology (Oxford), 45(10):1187–1193

    Article  Google Scholar 

  • van Tuyn J, Knaän-Shanzer S, van de Watering MJ, de Graaf M, van der Laarse A, Schalij MJ, van der Wall EE, de Vries AA, Atsma DE (2005) Activation of cardiac and smooth muscle-specific genes in primary human cells after forced expression of human myocardin. Cardiovasc Res, 67(2):245–255

    Article  Google Scholar 

  • Wakitani S, Saito T, Caplan AI (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve, 18(2):1417–1426

    Article  Google Scholar 

  • Wang JA, Li CL, Fan YQ, He H, Sun Y (2004) Allograftic bone marrow-derived mesenchymal stem cells transplanted into heart infarcted model of rabbit to renovate infarcted heart. J Zhejiang Univ Sci, 5(10):1279–1285

    Article  Google Scholar 

  • Wang JA, Xie XJ, Sun Y, He H, Jiang CY, Zhou BQ, Luo RH, Dong L (2005) Autologous mesenchynml stem cells transplantation in patients with postmyocardial infarction and cardiac dysfunction. Chin J Emerg Med, 14(12):996–999

    Google Scholar 

  • Wang JA, Luo RH, Zhang X, Xie XJ, Hu XY, He AN, Chen J, Li JH (2006a) Bone marrow mesenchymal stem cell transplantation combined with perindopril treatment attenuates infarction remodelling in a rat model of acute myocardial infarction. J Zhejiang Univ Sci B, 7(8):641–647

    Article  Google Scholar 

  • Wang JA, Xie XJ, He H, Sun Y, Jiang J, Luo RH, Fan YQ, Dong L (2006b) A prospective, randomized, controlled trial of autologous mesenchymal stem cells transplantation for dilated cardiomyopathy. Zhonghua Xin Xue Guan Bing Za Zhi, 34(2):107–110

    Google Scholar 

  • Wang PP, Wang JH, Yan ZP, Hu MY, Lau GK, Fan ST, Luk JM (2004) Expression of hepatocyte-like phenotypes in bone marrow stromal cells after HGF induction. Biochem Biophys Res Commun, 320(3):712–716

    Article  Google Scholar 

  • Wang S, Wang JA, Li J, Zhou J, Wang H (2008) Voltage-dependent potassium channels are involved in staurosporine-induced apoptosis of rat mesenchymal stem cells. Cell Biol Int, 32(2):312–319

    Article  Google Scholar 

  • Wang SP, Wang JA, Luo RH, Cui WY, Wang H (2008) Potassium channel currents in rat mesenchymal stem cells and their possible roles in cell proliferation. Clin Exp Pharmacol Physiol, 35(9):1077–1084

    Article  Google Scholar 

  • Xie XJ, Wang JA, Cao J, Zhang X (2006) Differentiation of bone marrow mesenchymal stem cells induced by myocardial medium under hypoxic conditions. Acta Pharmacol Sin, 27(9):1153–1158

    Article  Google Scholar 

  • Xu M, Wani M, Dai YS, Wang J, Yan M, Ayub A, Ashraf M (2004) Differentiation of bone marrow stromal cells into the cardiac phenotype requires intercellular communication with myocytes. Circulation, 110(17):2658–2665

    Article  Google Scholar 

  • Yoon YS, Park JS, Tkebuchava T, Luedeman C, Losordo DW (2004) Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction. Circulation, 109(25):3154–3157

    Article  Google Scholar 

  • Yoon SR, Chung JW, Choi I (2007) Development of natural killer cells from hematopoietic stem cells. Mol Cells, 24(1):1–8

    Google Scholar 

  • Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanni I, Gerdoni E, Giunti D, Ceravolo A, Cazzanti F, Frassoni F, Mancardi G, Uccelli A (2005) Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood, 106(5):1755–1761

    Article  Google Scholar 

  • Zhang N, Li J, Wang J, Luo R, Jiang J (2008) Bone marrow mesenchymal stem cells induces angiogenesis and attenuates the remodeling of diabetic cardiomyopathy. Exp Clin Endocrinol, 116(2):104–111

    Article  Google Scholar 

  • Zhang W, Ge W, Li C, You S, Liao L, Han Q, Deng W, Zhao RC (2004) Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev, 13(3):263–271

    Article  Google Scholar 

  • Zhu H, Mitsuhashi N, Klein A, Barsky LW, Weinberg K, Barr ML, Demetriou A, Wu GD (2006) The role of the hyaluronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix. Stem Cells, 24(4): 928–935

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Zhejiang University Press, Hangzhou and Springer-Verlag GmbH Berlin

About this chapter

Cite this chapter

He, A., Wang, S., Chen, T., Li, J., Liu, X. (2009). Biological Characteristics of MSCs. In: Wang, J., Xie, X. (eds) Mesenchymal Stem Cells for the Heart. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88150-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88150-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88149-0

  • Online ISBN: 978-3-540-88150-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics