Skip to main content

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

  • 931 Accesses

Abstract

In this chapter we propose a novel generic pigment model suitable for digital painting in a wide range of genres including traditional Chinese painting and water-based painting. The model embodies a simulation of the pigment-water solution and its interaction with the brush and the paper at the level of pigment particles; such a level of detail is needed for achieving highly intricate effects by the artist. The simulation covers pigment diffusion and sorption processes at the paper surface, and aspects of pigment particle deposition on the paper. We follow rules and formulations from quantitative studies of adsorption and diffusion processes in surface chemistry and the textile industry. The result is a pigment model that spans a continuum from very wet to very dry brush stroke effects. We also propose a new pigment mixing method based on machine learning techniques to emulate pigment mixing in real life as well as to support the creation of new artificial pigments. To experiment with the proposed model, we embedded the model in a sophisticated digital brush system. The combined system exhibits interactive speed on a modest PC platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arthur W. Adarnson and Alice P. Gast. Physical Chemistry of Surfaces. Wiley-Interscience, August 1997.

    Google Scholar 

  2. William Baxter. Physically-based Modeling Techniques for Interactrive Digital Painting. PhD Thesis, University of North Carolina at Chapel Hill, 2004.

    Google Scholar 

  3. Koen Beets, Tom Van Laerhoven, and Frank Van Reeth. Introducing artistic tools in an interactive paint system. In Proc. of WSCG, Plzen, Czech Republic: Union Agency-Science Press, 2006.

    Google Scholar 

  4. Bill Baxter, Vincent Scheib, Ming C. Lin, and Dinesh Manocha. DAB: Interactive haptic painting with 3D virtual brushes. In SIGGRAPH’ 01: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA: ACM Press, pages 461–468, 2001.

    Chapter  Google Scholar 

  5. William Baxter, Jeremy Wendt, and Ming C. Lin. Impasto: a realistic, Interactive model for paint. In NPAR’ 04: Proceedings of the 3rd International Symposium on Non-photorealistic Animation and Rendering, Annecy, France: ACM Press, pages 45–148, 2004.

    Chapter  Google Scholar 

  6. [CAS+97]_Cassidy J. Curtis, Sean E. Anderson, Joshua E. Seims, Kurt W. Fleischer, and David H. Salesin. Computer-generated watercolor. In SIGGRAPH’ 97: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pages 421–430, Los Angeles, CA, USA: ACM Press/Addison-Wesley Publishing Co., 1997.

    Chapter  Google Scholar 

  7. Tunde Cockshott, John Patterson, and David England. Modelling the texture of paint. Computer Graphics Forum, 11(3):217–226, 1992.

    Article  Google Scholar 

  8. John Crank. The Mathematics of Diffusion. Oxford, UK: Clarendon Press, 1975.

    Google Scholar 

  9. Nello Cristianini and Bernhard Scholkopf. Support vector machines and kernel methods: the new generation of learning machines. AI Magazine, 23(3):31–41, 2002.

    Google Scholar 

  10. Nelson S.H. Chu and Chiew-Lan Tai. Real-time painting with an expressive virtual Chinese brush. IEEE Computer Graphics and Applications, 24(5):76–85, 2004.

    Article  Google Scholar 

  11. Nelson S.H. Chu and Chiew-Lan Tai. Moxi: real-time ink dispersion in absorbent paper. ACM Transactions on Graphics, 24(3):504–511, 2005.

    Article  Google Scholar 

  12. A. Fick. Ann. Physik (Leipzig), 94:59, 1855.

    Google Scholar 

  13. Qinglian Guo and Tosiyasu L. Kunii. Modeling the diffuse painting of Sumie. IFIP Modeling in Computer Graphics, Tokyo, Japan: Springer-Verlag, pages 329–338, 1991.

    Google Scholar 

  14. Qinglian Guo and Tosiyasu L. Kunii. “Nijimi” rendering algorithm for creating quality black ink paintings. In Proceedings of Compu ter Graphics International (CGI), Tokyo, Japan: IEEE Computer Society, pages 152–159, 2003.

    Google Scholar 

  15. Qinglian Guo. Generating realistic calligraphy words. IEICE Transactions on Fundametals of Electronics Communications and Computer Sciences, E78A(11):1556–1558, 1995.

    Google Scholar 

  16. Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall, 2nd edition, 2001.

    Google Scholar 

  17. Mark J. Harris, William V. Baxter, Thorsten Scheuermann, and Anselmo Lastra. Simulation of cloud dynamics on graphics hardware. In HWWS’ 03: Proceedings of the ACM SIG-GRAPH/EUROGRAPHICS Conference on Graphics Hardware, Aire-la-Ville, Switzerland: Eurographics Association, pages 92–101, 2003.

    Google Scholar 

  18. Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques. Elsevier, 2nd edition, 2006.

    Google Scholar 

  19. Siu-Chi Hsu and Irene H. H. Lee. Drawing and animation using skeletal strokes. In SIGGRAPH’ 94: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, Orlando, FL, USA: ACM Press, pages 109–118, 1994.

    Chapter  Google Scholar 

  20. Chet S. Haase and Gary W. Meyer. Modeling pigmented materials for realistic image synthesis. ACM Transactions on Graphics, 11(4): 305–335, 1992.

    Article  MATH  Google Scholar 

  21. O. Kallmes and H. Corte. The structure of paper, I. the statistical geometry of an ideal two dimensional fiber network. Tappi Journal, 43(9):737–752, 1960.

    Google Scholar 

  22. Tosiyasu L. Kunii, Gleb V. Nosovskij, and Vladimir L. Vecherlinin. Two-dimensional diffusion model for diffuse ink painting. International Journal of Shape Modeling, 7(1):45–58, 2001.

    Article  Google Scholar 

  23. P. Kubelka. New contributions to the optics of intensely light-scattering material, part I. Journal of the Optical Society of America, 38:448–457, 1948.

    Article  MathSciNet  Google Scholar 

  24. Jens Kruger and Rudiger Westermann. Linear algebra operators for GPU implementation of numerical algorithms. ACM Transactions on Graphics, 22(3):908–916, 2003.

    Article  Google Scholar 

  25. I. Langmuir. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Amer. Chem. Soc., 40:1361–1403, 1908.

    Article  Google Scholar 

  26. Jintae Lee. Physically-based modeling of brush painting. Computer Networks and ISDN Systems, 29(14):1571–1576, 1997.

    Article  Google Scholar 

  27. Jintae Lee. Simulating Oriental black-ink painting. IEEE Computer Graphics and Applications, 19(3):74–81, 1999.

    Article  Google Scholar 

  28. Jintae Lee. Diffusion rendering of black ink paintings using new paper and ink models. Computers and Graphics, 25(2):295–308, 2001.

    Article  Google Scholar 

  29. Tom Van Laerhoven, Jori Liesenborgs, and Frank Van Reeth. Real-time watercolor painting on a distributed paper model. In CGI’04: Proc. of Computer Graphics International, Crete, Greece: IEEE Computer Society, pages 640–643, 2004.

    Chapter  Google Scholar 

  30. Yuan Lou, Salome Martinez, and Peter Polacik. Loops and branches of coexistence states in a Lotka-Volterra competition model. Journal of Differential Equations, 230(2):720–742, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  31. Tosiyasu L. Kunii, Gleb V. Nosovskij, and Takafumi Hayashi. A diffusion model for computer animation of diffuse ink painting. In Proceedings of Computer Animation, Geneva, Switzerland: IEEE Computer Society, pages 98–102, 1995.

    Chapter  Google Scholar 

  32. Tom Van Laerhoven and Frank Van Reeth. Real-time simulation of thin paint media. In SIGGRAPH2005 sketch, Los Angeles, CA, USA: ACM Press, 2005.

    Google Scholar 

  33. Wei-Jin Lin and Zhen-Chung Shih. Computer-generated Chinese painting with physically-based ink and color diffusion. In CGW’04: Proc. of Cracow Grid Workshop, Cracow, Poland: IOS Press, 2004.

    Google Scholar 

  34. Richard I. Masel. Principles of Adsorption and Reaction on Solid Surfaces. Wiley-Interscience, 1996.

    Google Scholar 

  35. Elaine M. McCash. Surface Chemistry. Oxford University Press, 2001.

    Google Scholar 

  36. R. McGregor. Diffusion and Sorption in Fibres and Films: an Introduction with Particular Reference to Dyes, London,UK; New York, NY, USA: Academic Press, volume 1, 1974.

    Google Scholar 

  37. D. N. Misra. Adsorption on Heterogeneous Surfaces: A Dubinin-Radushkevich Equation. Surface Science, 1969.

    Google Scholar 

  38. A. B. Newman. Trans. Am. Inst. Chem. Engrs., 27:203–220, 1931.

    Google Scholar 

  39. Matt Pharr and Randima Fernando. GPU Gems 2: Programming Techniques for High-performance Graphics and General-purpose Computation. nVIDIA, 2005.

    Google Scholar 

  40. Binh Pham. Expressive brush strokes. CVGIP: Graph. Models Image Process., 53(1):1–6, 1991.

    Article  MATH  Google Scholar 

  41. H. F. Rance. Handbook of Paper Science: Science and Technology of Papermaking, Paper Properties and Paper Usage, Amsterdam: Elsevier, volume 2, 1982.

    Google Scholar 

  42. Dave Rudolf, David Mould, and Eric Neufeld. Simulating wax crayons. In Proc. of Pacific Graphics, Alberta, Canada: IEEE Computer Society, pages 164–173, 2003.

    Google Scholar 

  43. Douglas M. Ruthven. Principles of Adsorption and Adsorption Processes. John Wiley & Sons, Inc., 1984.

    Google Scholar 

  44. David Small. Simulating watercolor by modeling diffusion, pigment, and paper fibers. In Proc. of SPIE’ 91, San Diego, CA, USA: SPIE Press, 1991.

    Google Scholar 

  45. Steve Strassmann. Hairy brushes. In SIGGRAPH’ 86: Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, Dallas, TX, USA: ACM Press, pages 225–232, 1986.

    Chapter  Google Scholar 

  46. Motoyuki Suzuki. Adsorption Engineering. Elsevier, 1990.

    Google Scholar 

  47. Shriram Santhanagopalanm and Ralph E. White. Series solution to the transient convective diffusion equation for a rotating disk electrode. Journal of the Electrochemical Society, 151(8):550–553, 2004.

    Google Scholar 

  48. Chi Tien. Adsorption Calculations and Modeling. Butterworth-Heinemann, 1994.

    Google Scholar 

  49. Helena T.F. Wong and Horace H.S. Ip. Virtual brush: a model-based synthesis of Chinese calligraphy. Computers and Graphics, 24(1):99–113, 2000.

    Article  Google Scholar 

  50. Steven Worley. A cellular texture basis function. In Proc. of SIGGRAPH, New Orleans, LA, USA: ACM Press, pages 291–294, 1996.

    Google Scholar 

  51. Songhua Xu, Francis C. M. Lau, Feng Tang, and Yunhe Pan. Advanced design for a realistic virtual brush. Computer Graphics Forum. In Proceedings of Eurographics’ 03, 22(3):533–542, 2003.

    Google Scholar 

  52. Songhua Xu, Min Tang, Francis CM. Lau, and Yunhe Pan. A solid model based virtual hairy brush. Computer Graphics Forum. In Proceedings of Eurographics’ 02, 21(3):299–308 & 625, 2002.

    Google Scholar 

  53. Songhua Xu, Min Tang, Francis C.M. Lau, and Yunhe Pan. Virtual hairy brush for painterly rendering. Graphical Models, 66(5):263–302, 2004.

    Article  MATH  Google Scholar 

  54. [XXK+06]_Songhua Xu, Yingqing Xu, Sing-Bing Kang, David H. Salesin, Yunhe Pan, and Heung-Yeung Shum. Animating Chinese paintings through stroke-based decomposition. ACM Transactions on Graphics, 25(2):239–267, 2006.

    Article  Google Scholar 

  55. Ralph T. Yang. Adsorbents: Fundamentals and Applications. Wiley-Interscience, 2003.

    Google Scholar 

  56. Young-Jung Yu, Do-Hoon Lee, Young-Bock Lee, and Hwan-Gue Cho. Interactive rendering technique for realistic oriental painting. Journal of WSCG, 11:538–545, 2003.

    Google Scholar 

  57. [ZST+99]_Qing Zhang, Youetsu Sato, Junya Takahashi, Kazunobu Muraoka, and Norishige Chiba. Simple cellular automaton-based simulation of ink behavior and its application to Suibokuga-like 3D rendering of trees. Journal of Visualization and Computer Animation, 10(1):27–37, 1999.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Zhejiang University Press, Hangzhou and Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Pigment Component of an Advanced Virtual Hairy Paintbrush System. In: A Computational Approach to Digital Chinese Painting and Calligraphy. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88148-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88148-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88147-6

  • Online ISBN: 978-3-540-88148-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics