Advertisement

A Principled Foundation for LCS

  • Jan Drugowitsch
  • Alwyn M. Barry
Conference paper
  • 357 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4998)

Abstract

In this paper we promote a new methodology for designing LCS that is based on first identifying their underlying model and then using standard machine learning methods to train this model. This leads to a clear identification of the LCS model and makes explicit the assumptions made about the data, as well as promises advances in the theoretical understanding of LCS through transferring the understanding of the applied machine learning methods to LCS. Additionally, it allows us, for the first time, to give a formal and general, that is, representation-independent, definition of the optimal set of classifiers that LCS aim at finding. To demonstrate the feasibility of the proposed methodology we design a Bayesian LCS model by borrowing concepts from the related Mixtures-of-Experts model. The quality of a set of classifiers and consequently also the optimal set of classifiers is defined by the application of Bayesian model selection, which turns finding this set into a principled optimisation task. Using a simple Pittsburgh-style LCS, a set of preliminary experiments demonstrate the feasibility of this approach.

Keywords

Monte Carlo Markov Chain Minimum Description Length Matching Function Multinomial Logit Model Genetic Algo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wilson, S.W.: Classifier Fitness Based on Accuracy. Evolutionary Computation 3(2), 149–175 (1995)CrossRefGoogle Scholar
  2. 2.
    Butz, M.V., Pelikan, M.: Analyzing the Evolutionary Pressures in XCS. In: [23], pp. 935–942.Google Scholar
  3. 3.
    Butz, M.V., Goldberg, D.E., Tharakunnel, K.: Analysis and Improvement of Fitness Exploitation in XCS: Bounding Models, Tournament Selection and Bilateral Accuracy. Evolutionary Computation 11, 239–277 (2003)CrossRefGoogle Scholar
  4. 4.
    Butz, M.V., Kovacs, T., Lanzi, P.L., Wilson, S.: Toward a Theory of Generalization and Learning in XCS. IEEE Transaction on Evolutionary Computation 8, 28–46 (2004)CrossRefGoogle Scholar
  5. 5.
    Drugowitsch, J., Barry, A.M.: A Formal Framework for Reinforcement Learning with Function Approximation in Learning Classifier Systems. Technical Report 2006–02, University of Bath, U.K (January 2006)Google Scholar
  6. 6.
    Wilson, S.W.: Function Approximation with a Classifier System. In: [23], pp. 974–981.Google Scholar
  7. 7.
    Jacobs, R.A., Jordan, M.I., Nowlan, S., Hinton, G.E.: Adaptive mixtures of local experts. Neural Computation 3, 1–12 (1991)CrossRefGoogle Scholar
  8. 8.
    Jordan, M.I., Jacobs, R.A.: Hierarchical mixtures of experts and the EM algorithm. Neural Computation 6, 181–214 (1994)CrossRefGoogle Scholar
  9. 9.
    McCullach, P., Nelder, J.A.: Generalized Linear Models. Monographs on Statistics and Applied Probability. Chapman and Hall, Boca Raton (1983)CrossRefGoogle Scholar
  10. 10.
    Drugowitsch, J., Barry, A.M.: Mixing Independent Classifiers. In: [24]Google Scholar
  11. 11.
    Bishop, C.M., Svensén, M.: Bayesian Hierarchical Mixtures of Experts. In: Proceedings of the 19th Annual Conference on Uncertainty in Artificial Intelligence (UAI 2003), pp. 57–64. Morgan Kaufmann, San Francisco (2003)Google Scholar
  12. 12.
    Brown, G., Kovacs, T., Marshall, J.: UCSPv: Principled Voting in UCS Rule Populations. In: [24], pp. 1774–1782.Google Scholar
  13. 13.
    Grünwald, P.D.: A tutorial introduction to the minimum description length. In: Grünwald, P., Myung, J., Pitt, M.A. (eds.) Advances in Minimum Description Length Theory and Applications. Information Processing Series, pp. 3–79. MIT Press, Cambridge (2005)Google Scholar
  14. 14.
    Vapnik, V.N.: An Overview of Statistical Learning Theory. IEEE Transactions on Neural Networks 10(5), 988–999 (1999)CrossRefGoogle Scholar
  15. 15.
    Ueda, N., Ghahramani, Z.: Bayesian model search for mixture models based on optimizing variational bounds. Neural Networks 15, 1223–1241 (2002)CrossRefGoogle Scholar
  16. 16.
    MacKay, D.J.C.: Bayesian interpolation. Neural Computation 4(3), 415–447 (1992)CrossRefzbMATHGoogle Scholar
  17. 17.
    Waterhouse, S., MacKay, D., Robinson, T.: Bayesian Methods for Mixtures of Experts. In: Touretzky, D.S.T., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems 8, pp. 351–357. MIT Press, Cambridge (1996)Google Scholar
  18. 18.
    Waterhouse, S.: Classification and Regression using Mixtures of Experts. PhD thesis, Department of Engineering, University of Cambridge (1997)Google Scholar
  19. 19.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  20. 20.
    Jaakkola, T.S.: Tutorial on variational approximation methods. In: Opper, M., Saad, D. (eds.) Advanced Mean Field Methods, pp. 129–160. MIT Press, Cambridge (2001)Google Scholar
  21. 21.
    Drugowitsch, J., Barry, A.M.: Generalised Mixtures of Experts, Independent Expert Training, and Learning Classifier Systems. Technical Report 2007–02, University of Bath, U.K (2007)Google Scholar
  22. 22.
    Chipman, H.A., George, E.I., McCulloch, R.E.: Bayesian CART Model Search. Journal of the American Statistical Association 93(443), 935–948 (1998)CrossRefGoogle Scholar
  23. 23.
    Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.): GECCO-2001: Proceedings of the Genetic and Evolutionary Computation Conference. Morgan Kaufmann, San Francisco (2001)Google Scholar
  24. 24.
    Thierens, D., Beyer, H.G., Birattari, M., Bongard, J., Branke, J., Clark, J.A., Cliff, D., Congdon, C.B., Deb, K., Doerr, B., Kovacs, T., Kumar, S., Miller, J.F., Moore, J., Neumann, F., Pelikan, M., Poli, R., Sastry, K., Stanley, K.O., Stützle, T., Watson, R.A., Wegener, I. (eds.): GECCO-2007: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation Conference 2007, vol. 2. ACM Press, New York (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jan Drugowitsch
    • 1
  • Alwyn M. Barry
    • 1
  1. 1.Department of Computer ScienceUniversity of BathBathUK

Personalised recommendations