Advertisement

Analysing Learning Classifier Systems in Reactive and Non-reactive Robotic Tasks

  • Renan C. Moioli
  • Patricia A. Vargas
  • Fernando J. Von Zuben
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4998)

Abstract

There are few contributions to robot autonomous navigation applying Learning Classifier Systems (LCS) to date. The primary objective of this work is to analyse the performance of the strength-based LCS and the accuracy-based LCS, named EXtended Learning Classifier System (XCS), when applied to two distinct robotic tasks. The first task is purely reactive, which means that the action to be performed can rely only on the current status of the sensors. The second one is non-reactive, which means that the robot might use some kind of memory to be able to deal with aliasing states. This work presents a rule evolution analysis, giving examples of evolved populations and their peculiarities for both systems. A review of LCS derivatives in robotics is provided together with a discussion of the main findings and an outline of future investigations.

Keywords

Mobile Robot Obstacle Avoidance Reward Function Real Robot Internal Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (1999)Google Scholar
  2. 2.
    Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. Bradford Book (2004)Google Scholar
  3. 3.
    Studley, M., Bull, L.: X-TCS: Accuracy-based learning classifier system robotics. In: Congress on Evolutionary Computation, pp. 2099–2106. IEEE, Los Alamitos (2005)Google Scholar
  4. 4.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press (1975)Google Scholar
  5. 5.
    Holland, J.H.: Hidden Order. Addison-Wesley, Reading (1995)Google Scholar
  6. 6.
    Holland, J.H., Holyoak, K.J., Nisbett, R.E., Thagard, P.: Induction: Processes of Inference, Learning, and Discovery. MIT Press, Cambridge (1986)Google Scholar
  7. 7.
    Holmes, J.H., Lanzi, P.L., Stolzmann, W., Wilson, S.: Learning classifier systems: new models, successful applications (2000)Google Scholar
  8. 8.
    Wilson, S.W.: Classifier fitness based on accuracy. Evolutionary Computation 3, 149–175 (1995)CrossRefGoogle Scholar
  9. 9.
    Wilson, S.W.: Classifiers that approximate functions. Natural Computing: an international journal 1(2-3), 211–234 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lanzi, P.L., Wilson, S.W.: Toward optimal classifier system performance in non-markov environments. Evolutionary Computation 8(4), 393–418 (2000)CrossRefGoogle Scholar
  11. 11.
    Stolzmann, W.: Learning classifier systems using the cognitive mechanism of anticipatory behavioural control. In: Proceedings of the First European Workshop on Cognitive Modelling, pp. 82–89 (1996)Google Scholar
  12. 12.
    Hurst, J., Bull, L., Melhuish, C.: TCS learning classifier system controller on a real robot. In: Proceedings of the 7th International Conference on Parallel Problem Solving from Nature (2002)Google Scholar
  13. 13.
    Bull, L.: Applications of Learning Classifier Systems. Springer, Heidelberg (2004)CrossRefzbMATHGoogle Scholar
  14. 14.
    Vargas, P.A., Lyra Filho, C., von Zuben, F.J.: Application of learning classifier systems to the on line reconfiguration of electric power distribution networks. Applications of Learning Classifier Systems 150, 260–275 (2004)CrossRefGoogle Scholar
  15. 15.
    Armano, G.: NXCS experts for financial time series forecasting. In: Bull, L. (ed.) Applications of Learning Classifier Systems (2004)Google Scholar
  16. 16.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley, Inc., Reading (1989)zbMATHGoogle Scholar
  17. 17.
    Vargas, P.A.: Classifier systems for loss reduction in electric power distribution networks (in portuguese). Master’s thesis, School of Electrical and Computer Engineering, Unicamp, Brazil (2000)Google Scholar
  18. 18.
    Booker, L.B., Goldberg, D.E., Holland, J.H.: Classifier systems and genetic algorithms. Artificial Intelligence 40, 235–282 (1989)CrossRefGoogle Scholar
  19. 19.
    Cazangi, R.R., Von Zuben, F.J., Figueiredo, M.: A classifier system in real applications for robot navigation. In: The IEEE Congress on Evolutionary Computation, Canberra, Australia, vol. 1, pp. 574–580 (2003)Google Scholar
  20. 20.
    Butz, M.V., Wilson, S.W.: An algorithmic description of XCS. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2000. LNCS (LNAI), vol. 1996, pp. 253–272. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Cliff, D., Ross, S.: Adding temporary memory to ZCS. Adaptive Behavior (1995)Google Scholar
  22. 22.
    Wilson, S.W.: ZCS: A zeroth level classifier system. Evolutionary Computation 2(1), 1–18 (1994)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Stolzmann, W., Butz, M.V.: Latent learning and action planning in robots with anticipatory classifier systems. Learning Classifier Systems (1999)Google Scholar
  24. 24.
    Dorigo, M., Colombetti, M.: Robot Shaping: An Experiment in Behavior Engineering. MIT Press, Cambridge (1997)Google Scholar
  25. 25.
    Katagami, D., Yamada, S.: Interactive classifier system for real robot learning. In: Proceedings of the 2000 IEEE International Workshop on Robot and Human Interactive Communnication, Osaka, Japan (2000)Google Scholar
  26. 26.
    Bonarini, A.: An introduction to learning fuzzy classifier systems. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 1999. LNCS (LNAI), vol. 1813, pp. 83–106. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  27. 27.
    Bonarini, A.: Fuzzy modelling: Paradigms and practice. In: Pedrycz, W. (ed.) Fuzzy Modelling: Paradigms and Practice. Kluwer Academic Press, Norwell (1996)Google Scholar
  28. 28.
    Bonarini, A., Matteucc, M.: Fixcs: A fuzzy implementation of XCS. In: IEEE International Fuzzy Systems Conference, FUZZ-IEEE 2007 (2007)Google Scholar
  29. 29.
    Gerard, P., Sigaud, O.: YACS: Combining dynamic programming with generalization in classifier systems. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2000. LNCS (LNAI), vol. 1996, pp. 259–266. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  30. 30.
    Hurst, J., Bull, L.: A neural learning classifier system with self-adaptive constructivism for mobile robot control. Artif. Life 12(3), 353–380 (2003)CrossRefGoogle Scholar
  31. 31.
    Webb, E., Hart, E., Ross, P., Lawson, A.: Controlling a simulated khepera with an XCS classifier system with memory. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 885–892. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  32. 32.
    Vargas, P.A., de Castro, L.N., Michelan, R., Von Zuben, F.J.: An immune learning classifier network for autonomous navigation. In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 69–80. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  33. 33.
    Zatuchna, Z.V.: AgentP: a Learning Classifier System with Associative Perception in Maze Environments. PhD thesis, School of Computing Sciences, University of East Anglia (2005)Google Scholar
  34. 34.
    Kovacs, T.: A learning classifier systems bibliography (2002), http://www.cs.bris.ac.uk/~kovacs/lcs/search.html
  35. 35.
    S. A. KTEAM (2007), http://www.k-team.com
  36. 36.
    Perreta, S.J., Gallagher, J.C.: The Java Khepera simulator from the wright state university, Ohio, USA (2004)Google Scholar
  37. 37.
    Kovacs, T.: Strength or Accuracy: Credit Assignment in Learning Classifier Systems. Springer, Heidelberg (2004)CrossRefzbMATHGoogle Scholar
  38. 38.
    Lanzi, P.L.: An analysis of the memory mechanism of XCSM. In: Proceedings of the Third Annual Conference on Genetic Programming (1998)Google Scholar
  39. 39.
    Lanzi, P.L., Wilson, S.W.: Optimal classifier system performance in non-markov environments. Technical report, Politecnico de Milano (1999)Google Scholar
  40. 40.
    Jakobi, N.: Minimal Simulations for Evolutionary Robotics. PhD thesis, University of Sussex (1998)Google Scholar
  41. 41.
    Husbands, P.: Evolving robot behaviours with diffusing gas networks. In: Evolutionary Robotics: First European Workshop, EvoRobot 1998 (1998)Google Scholar
  42. 42.
    Riolo, R.L.: The emergence of default hierarchies in learning classifier systems. In: Proceedings of the Third Congress on Genetic Algorithms (1989)Google Scholar
  43. 43.
    Butz, M.V., Goldberg, D.E., Tharakunnel, K.: Analysis and improvement of fitness exploitation in XCS: Bounding models, tournament selection, and bilateral accuracy. Evolutionary Computation 11(3), 239–277 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Renan C. Moioli
    • 1
  • Patricia A. Vargas
    • 2
  • Fernando J. Von Zuben
    • 1
  1. 1.Laboratory of Bioinformatics and Bio-Inspired Computing - LBiCSchool of Electrical and Computer Engineer - FEEC/Unicamp Campinas-SPBrazil
  2. 2.Centre for Computational Neuroscience and Robotics (CCNR) Department of InformaticsUniversity of SussexFalmer, BrightonUnited Kingdom

Personalised recommendations