Skip to main content

Analysing Learning Classifier Systems in Reactive and Non-reactive Robotic Tasks

  • Conference paper
Learning Classifier Systems (IWLCS 2006, IWLCS 2007)

Abstract

There are few contributions to robot autonomous navigation applying Learning Classifier Systems (LCS) to date. The primary objective of this work is to analyse the performance of the strength-based LCS and the accuracy-based LCS, named EXtended Learning Classifier System (XCS), when applied to two distinct robotic tasks. The first task is purely reactive, which means that the action to be performed can rely only on the current status of the sensors. The second one is non-reactive, which means that the robot might use some kind of memory to be able to deal with aliasing states. This work presents a rule evolution analysis, giving examples of evolved populations and their peculiarities for both systems. A review of LCS derivatives in robotics is provided together with a discussion of the main findings and an outline of future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (1999)

    Google Scholar 

  2. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. Bradford Book (2004)

    Google Scholar 

  3. Studley, M., Bull, L.: X-TCS: Accuracy-based learning classifier system robotics. In: Congress on Evolutionary Computation, pp. 2099–2106. IEEE, Los Alamitos (2005)

    Google Scholar 

  4. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press (1975)

    Google Scholar 

  5. Holland, J.H.: Hidden Order. Addison-Wesley, Reading (1995)

    Google Scholar 

  6. Holland, J.H., Holyoak, K.J., Nisbett, R.E., Thagard, P.: Induction: Processes of Inference, Learning, and Discovery. MIT Press, Cambridge (1986)

    Google Scholar 

  7. Holmes, J.H., Lanzi, P.L., Stolzmann, W., Wilson, S.: Learning classifier systems: new models, successful applications (2000)

    Google Scholar 

  8. Wilson, S.W.: Classifier fitness based on accuracy. Evolutionary Computation 3, 149–175 (1995)

    Article  Google Scholar 

  9. Wilson, S.W.: Classifiers that approximate functions. Natural Computing: an international journal 1(2-3), 211–234 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lanzi, P.L., Wilson, S.W.: Toward optimal classifier system performance in non-markov environments. Evolutionary Computation 8(4), 393–418 (2000)

    Article  Google Scholar 

  11. Stolzmann, W.: Learning classifier systems using the cognitive mechanism of anticipatory behavioural control. In: Proceedings of the First European Workshop on Cognitive Modelling, pp. 82–89 (1996)

    Google Scholar 

  12. Hurst, J., Bull, L., Melhuish, C.: TCS learning classifier system controller on a real robot. In: Proceedings of the 7th International Conference on Parallel Problem Solving from Nature (2002)

    Google Scholar 

  13. Bull, L.: Applications of Learning Classifier Systems. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  14. Vargas, P.A., Lyra Filho, C., von Zuben, F.J.: Application of learning classifier systems to the on line reconfiguration of electric power distribution networks. Applications of Learning Classifier Systems 150, 260–275 (2004)

    Article  Google Scholar 

  15. Armano, G.: NXCS experts for financial time series forecasting. In: Bull, L. (ed.) Applications of Learning Classifier Systems (2004)

    Google Scholar 

  16. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley, Inc., Reading (1989)

    MATH  Google Scholar 

  17. Vargas, P.A.: Classifier systems for loss reduction in electric power distribution networks (in portuguese). Master’s thesis, School of Electrical and Computer Engineering, Unicamp, Brazil (2000)

    Google Scholar 

  18. Booker, L.B., Goldberg, D.E., Holland, J.H.: Classifier systems and genetic algorithms. Artificial Intelligence 40, 235–282 (1989)

    Article  Google Scholar 

  19. Cazangi, R.R., Von Zuben, F.J., Figueiredo, M.: A classifier system in real applications for robot navigation. In: The IEEE Congress on Evolutionary Computation, Canberra, Australia, vol. 1, pp. 574–580 (2003)

    Google Scholar 

  20. Butz, M.V., Wilson, S.W.: An algorithmic description of XCS. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2000. LNCS (LNAI), vol. 1996, pp. 253–272. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  21. Cliff, D., Ross, S.: Adding temporary memory to ZCS. Adaptive Behavior (1995)

    Google Scholar 

  22. Wilson, S.W.: ZCS: A zeroth level classifier system. Evolutionary Computation 2(1), 1–18 (1994)

    Article  MathSciNet  Google Scholar 

  23. Stolzmann, W., Butz, M.V.: Latent learning and action planning in robots with anticipatory classifier systems. Learning Classifier Systems (1999)

    Google Scholar 

  24. Dorigo, M., Colombetti, M.: Robot Shaping: An Experiment in Behavior Engineering. MIT Press, Cambridge (1997)

    Google Scholar 

  25. Katagami, D., Yamada, S.: Interactive classifier system for real robot learning. In: Proceedings of the 2000 IEEE International Workshop on Robot and Human Interactive Communnication, Osaka, Japan (2000)

    Google Scholar 

  26. Bonarini, A.: An introduction to learning fuzzy classifier systems. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 1999. LNCS (LNAI), vol. 1813, pp. 83–106. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  27. Bonarini, A.: Fuzzy modelling: Paradigms and practice. In: Pedrycz, W. (ed.) Fuzzy Modelling: Paradigms and Practice. Kluwer Academic Press, Norwell (1996)

    Google Scholar 

  28. Bonarini, A., Matteucc, M.: Fixcs: A fuzzy implementation of XCS. In: IEEE International Fuzzy Systems Conference, FUZZ-IEEE 2007 (2007)

    Google Scholar 

  29. Gerard, P., Sigaud, O.: YACS: Combining dynamic programming with generalization in classifier systems. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2000. LNCS (LNAI), vol. 1996, pp. 259–266. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  30. Hurst, J., Bull, L.: A neural learning classifier system with self-adaptive constructivism for mobile robot control. Artif. Life 12(3), 353–380 (2003)

    Article  Google Scholar 

  31. Webb, E., Hart, E., Ross, P., Lawson, A.: Controlling a simulated khepera with an XCS classifier system with memory. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 885–892. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  32. Vargas, P.A., de Castro, L.N., Michelan, R., Von Zuben, F.J.: An immune learning classifier network for autonomous navigation. In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 69–80. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  33. Zatuchna, Z.V.: AgentP: a Learning Classifier System with Associative Perception in Maze Environments. PhD thesis, School of Computing Sciences, University of East Anglia (2005)

    Google Scholar 

  34. Kovacs, T.: A learning classifier systems bibliography (2002), http://www.cs.bris.ac.uk/~kovacs/lcs/search.html

  35. S. A. KTEAM (2007), http://www.k-team.com

  36. Perreta, S.J., Gallagher, J.C.: The Java Khepera simulator from the wright state university, Ohio, USA (2004)

    Google Scholar 

  37. Kovacs, T.: Strength or Accuracy: Credit Assignment in Learning Classifier Systems. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  38. Lanzi, P.L.: An analysis of the memory mechanism of XCSM. In: Proceedings of the Third Annual Conference on Genetic Programming (1998)

    Google Scholar 

  39. Lanzi, P.L., Wilson, S.W.: Optimal classifier system performance in non-markov environments. Technical report, Politecnico de Milano (1999)

    Google Scholar 

  40. Jakobi, N.: Minimal Simulations for Evolutionary Robotics. PhD thesis, University of Sussex (1998)

    Google Scholar 

  41. Husbands, P.: Evolving robot behaviours with diffusing gas networks. In: Evolutionary Robotics: First European Workshop, EvoRobot 1998 (1998)

    Google Scholar 

  42. Riolo, R.L.: The emergence of default hierarchies in learning classifier systems. In: Proceedings of the Third Congress on Genetic Algorithms (1989)

    Google Scholar 

  43. Butz, M.V., Goldberg, D.E., Tharakunnel, K.: Analysis and improvement of fitness exploitation in XCS: Bounding models, tournament selection, and bilateral accuracy. Evolutionary Computation 11(3), 239–277 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moioli, R.C., Vargas, P.A., Von Zuben, F.J. (2008). Analysing Learning Classifier Systems in Reactive and Non-reactive Robotic Tasks. In: Bacardit, J., Bernadó-Mansilla, E., Butz, M.V., Kovacs, T., Llorà, X., Takadama, K. (eds) Learning Classifier Systems. IWLCS IWLCS 2006 2007. Lecture Notes in Computer Science(), vol 4998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88138-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88138-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88137-7

  • Online ISBN: 978-3-540-88138-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics