Skip to main content

Technology Extraction of Expert Operator Skills from Process Time Series Data

  • Conference paper
Learning Classifier Systems (IWLCS 2006, IWLCS 2007)

Abstract

Continuation processes in chemical and/or biotechnical plants always generate a large amount of time series data. However, since conventional process models are described as a set of control models, it is difficult to explain complicated and active plant behaviors. To uncover complex plant behaviors, this paper proposes a new method of developing a process response model from continuous time-series data. The method consists of the following phases: (1) Reciprocal correlation analysis; (2) Process response model; (3) Extraction of control rules; (4) Extraction of a workflow; and (5) Detection of outliers. The main contribution of the research is to establish a method to mine a set of meaningful control rules from a Learning Classifier System using the Minimum Description Length criteria and Tabu search method. The proposed method has been applied to an actual process of a biochemical plant and has shown its validity and effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471 (1978)

    Article  MATH  Google Scholar 

  2. Adami, C.: Introduction to Artificial Life. Springer, NY (1998)

    Book  MATH  Google Scholar 

  3. Mehta, M., Rissanen, J., Agrawal, R.: MDL-based decision tree pruning. In: Proceedings of the First International Conference on Knowledge Discovery and Data Mining (KDD 1995), pp. 216–221 (1995)

    Google Scholar 

  4. Yamanishi, K.: A learning criterion for stochastic rules. Machine Learning 8, 165–203 (1992)

    MATH  Google Scholar 

  5. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of assosiation rules. In: Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI Press and The MIT Press (1996)

    Google Scholar 

  6. Hilderman, R.J., Hamilton, H.J.: Knowledge Discovery and Measures of Interest. Kluwer Academic Publishers, Dordrecht (2001)

    Book  MATH  Google Scholar 

  7. Holland, J.H., Reitman, J.S.: Cognitive systems based on adaptive algorithms. SIGART Bull. (63), 49 (1977)

    Google Scholar 

  8. Smith, S.: A learning system based on genetic adaptive algorithms. In: Ph.D thesis. University of Pittsburgh (1980)

    Google Scholar 

  9. Smith, S.: Flexible learning of problem solving heuristics through adaptive search. In: Proceedings 8th International Joint Conference on Artificial Intelligence (August 1983)

    Google Scholar 

  10. Butz, M.V., Pelikan, M., Llorà, X., Goldberg, D.E.: Extracted global structure makes local building block processing effective in XCS. In: GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary computation, pp. 655–662. ACM, New York (2005)

    Google Scholar 

  11. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Publishing Company, Inc., Reading (1989)

    MATH  Google Scholar 

  12. Adriaans, P., Zantinge, D.: Data Mining. Addison-Wesley, Reading (1996)

    Google Scholar 

  13. Weiss, S.M., Indurkhya, N.: Predictice Data Mining, A Practical Guide. Morgan Kaufmann Publishers, Inc., San Francisco (1997)

    MATH  Google Scholar 

  14. Berndt, D.J., Clifford, J.: Finding patterns in time series: a dynamic programming approach, 229–248 (1996)

    Google Scholar 

  15. Hetland, M.L., Saetrom, P.: Evolutionary rule mining in time series databases. Mach. Learn. 58(2-3), 107–125 (2005)

    Article  MATH  Google Scholar 

  16. Harvey, A.C.: Time Series Models. Prentice Hall/Harvester (1993)

    Google Scholar 

  17. Stock, J.H., Watson, M.W.: A probability model of the coincident economic indicators. Working Paper 2772, National Bureau of Economic Research (November 1988)

    Google Scholar 

  18. Freitas, A.A.: Data mining and knowledge discovery with evolutionary algorithms. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  19. Barry, A., Holme, J., Llora, X.: Data mining using learning classifier systems. In: Bull, L. (ed.) Applications of Learning Classifier Systems, pp. 15–67. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Iba, H., de Garis, H., Sato, T.: Genetic programming using a minimum description length principle. In: Kinnear Jr., K.E. (ed.) Advances in Genetic Programming, pp. 265–284. MIT Press, Cambridge (1994)

    Google Scholar 

  21. Bacardit, J., Garrell, J.M.: Bloat control and generalization pressure using the minimum description length principle for a pittsburgh approach learning classifier system. In: Kovacs, T., Llorà, X., Takadama, K., Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2003. LNCS (LNAI), vol. 4399, pp. 59–79. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Smyth, P., Goodman, R.M.: An information theoretic approach to rule induction from databases. IEEE Transactions on Knowledge and Data Engineering 4(4), 301–316 (1992)

    Article  Google Scholar 

  23. Hilderman, R.J., Hamilton, H.J.: Heuristic measures of interestingness. In: Proceedings of the Third European Conference on the Principles of Data Mining and Knowledge Discovery, pp. 232–241 (1999)

    Google Scholar 

  24. Quinlan, J.R.: C4.5:Programs for Machine Learning. Morgan Kaufman Publishers, Inc., San Francisco (1993)

    Google Scholar 

  25. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Dordrecht (1997)

    Book  MATH  Google Scholar 

  26. Yamanishi, K., Takeuchi, J.: A unifying approach to detecting outliers and change-points from nonstationary data. In: The Eighth ACM SIGKDD(KDD2002) (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kurahashi, S., Terano, T. (2008). Technology Extraction of Expert Operator Skills from Process Time Series Data. In: Bacardit, J., Bernadó-Mansilla, E., Butz, M.V., Kovacs, T., Llorà, X., Takadama, K. (eds) Learning Classifier Systems. IWLCS IWLCS 2006 2007. Lecture Notes in Computer Science(), vol 4998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88138-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88138-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88137-7

  • Online ISBN: 978-3-540-88138-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics