Advertisement

Classifier Conditions Using Gene Expression Programming

Invited paper
  • Stewart W. Wilson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4998)

Abstract

The classifier system XCSF was modified to use gene expression programming for the evolution and functioning of the classifier conditions. The aim was to fit environmental regularities better than is typically possible with conventional rectilinear conditions. An initial experiment approximating a nonlinear oblique environment showed excellent fit to the regularities.

Keywords

Evolutionary Computation Genetic Operator Gene Expression Programming Expression Tree State Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bull, L., O’Hara, T.: Accuracy-based neuro and neuro-fuzzy classifier systems. In: Langdon, et al. (eds.) [12], pp. 905–911Google Scholar
  2. 2.
    Martin, V.: Kernel-based, ellipsoidal conditions in the real-valued XCS classifier system. In: Beyer, H.-G., O’Reilly, U.-M., Arnold, D.V., Banzhaf, W., Blum, C., Bonabeau, E.W., Cantu-Paz, E., Dasgupta, D., Deb, K., Foster, J.A., de Jong, E.D., Lipson, H., Llora, X., Mancoridis, S., Pelikan, M., Raidl, G.R., Soule, T., Tyrrell, A.M., Watson, J.-P., Zitzler, E. (eds.) GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary computation, 25-29 June 2005, vol. 2, pp. 1835–1842. ACM Press, Washington (2005)Google Scholar
  3. 3.
    Martin, V.: Rule-Based Evolutionary Online Learning Systems: A Principled Approach to LCS Analysis and Design. Springer, Berlin (2006)zbMATHGoogle Scholar
  4. 4.
    Butz, M.V., Lanzi, P.L., Wilson, S.W.: Function approximation with XCS: hyperellipsoidal conditions, recursive least squares, and compaction. In: IEEE Transactions on Evolutionary Computation (in press) Google Scholar
  5. 5.
    Butz, M.V., Wilson, S.W.: An Algorithmic Description of XCS. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2000. LNCS (LNAI), vol. 1996, pp. 253–272. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Dixon, P.W., Corne, D.W., Oates, M.J.: A ruleset reduction algorithm for the XCS learning classifier system. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2003. LNCS (LNAI), vol. 2661, pp. 20–29. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Ferreira, C.: Gene expression programming: a new algorithm for solving problems. Complex Systems 13(2), 87–129 (2001)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Ferreira, C.: Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence, 2nd edn. Springer, Germany (2006)zbMATHGoogle Scholar
  9. 9.
    Fu, C., Davis, L.: A modified classifier system compaction algorithm. In: Langdon, et al. (ed.) [12], pp. 920–925.Google Scholar
  10. 10.
    Holland, J.H., Reitman, J.S.: Cognitive systems based on adaptive algorithms. In: Waterman, D.A., Hayes-Roth, F. (eds.) Pattern-directed Inference Systems. Academic Press, New York (1978); Reprinted In: Fogel D.B.(ed.). Evolutionary Computation. The Fossil Record. IEEE Press (1998) ISBN: 0-7803-3481-7 Google Scholar
  11. 11.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  12. 12.
    Langdon, W.B., Cantú-Paz, E., Mathias, K.E., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E.K., Jonoska, N. (eds.): Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2002). Morgan Kaufmann, San Francisco (2002)Google Scholar
  13. 13.
    Lanzi, P.L.: Extending the Representation of Classifier Conditions Part II: From Messy Coding to S-Expressions. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 1999), pp. 345–352. Morgan Kaufmann, San Francisco (1999)Google Scholar
  14. 14.
    Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.): Learning Classifier Systems. From Foundations to Applications. LNCS (LNAI), vol. 1813. Springer, Berlin (2000)Google Scholar
  15. 15.
    Lanzi, P.L., Wilson, S.W.: Using convex hulls to represent classifier conditions. In: Keijzer, M., Cattolico, M., Arnold, D., Babovic, V., Blum, C., Bosman, P., Butz, M.V., Coello, C.C., Dasgupta, D., Ficici, S.G., Foster, J., Hernandez-Aguirre, A., Hornby, G., Lipson, H., McMinn, P., Moore, J., Raidl, G., Rothlauf, F., Ryan, C., Thierens, D. (eds.) GECCO 2006: Proceedings of the 8th annual conference on Genetic and evolutionary computation, 8-12 July 2006, vol. 2, pp. 1481–1488. ACM Press, Washington (2006)Google Scholar
  16. 16.
    Li, X., Zhou, C., Xiao, W., Nelson, P.C.: Prefix gene expression programming. In: Rothlauf, F. (ed.) Late breaking paper at Genetic and Evolutionary Computation Conference (GECCO 2005), Washington, D.C., USA, 25-29 June (2005)Google Scholar
  17. 17.
    Luke, S.: A comparison of bloat control methods for genetic programming. Evolutionary Computation 14(3), 309–344 (2006)CrossRefGoogle Scholar
  18. 18.
    Tamee, K., Bull, L., Pinngern, O.: Towards clustering with XCS. In: Thierens, D., Beyer, H.-G., Bongard, J., Branke, J., Clark, J.A., Cliff, D., Congdon, C.B., Deb, K., Doerr, B., Kovacs, T., Kumar, S., Miller, J.F., Moore, J., Neumann, F., Pelikan, M., Poli, R., Sastry, K., Stanley, K.O., Stutzle, T., Watson, R.A., Wegener, I. (eds.) GECCO 2007: Proceedings of the 9th annual conference on Genetic and evolutionary computation, London, 7-11 July 2007, vol. 2, pp. 1854–1860. ACM Press, New York (2007)Google Scholar
  19. 19.
    Wilson, S.W.: Classifier Fitness Based on Accuracy. Evolutionary Computation 3(2), 149–175 (1995)CrossRefGoogle Scholar
  20. 20.
    Wilson, S.W.: Get Real! XCS with Continuous-Valued Inputs. In: Lanzi, et al. (eds.) [14], pp. 209–219Google Scholar
  21. 21.
    Wilson, S.W.: Function approximation with a classifier system. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), 7-11 July 2001, pp. 974–981. Morgan Kaufmann, San Francisco (2001)Google Scholar
  22. 22.
    Wilson, S.W.: Classifiers that approximate functions. Natural Computing 1(2-3), 211–233 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Wilson, S.W.: Compact rulesets from XCSI. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2001. LNCS (LNAI), vol. 2321, pp. 196–208. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. 24.
    Wilson, S.W.: Classifier systems for continuous payoff environments. In: Deb, K., Poli, R., Banzhaf, W., Beyer, H.-G., Burke, E., Darwen, P., Dasgupta, D., Floreano, D., Foster, J., Harman, M., Holland, O., Lanzi, P.L., Spector, L., Tettamanzi, A., Thierens, D., Tyrrell, A. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 824–835. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Wilson, S.W.: Three architectures for continuous action. In: Kovacs, T., Llorà, X., Takadama, K., Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2003. LNCS (LNAI), vol. 4399, pp. 239–257. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Stewart W. Wilson
    • 1
    • 2
  1. 1.Prediction DynamicsConcordUSA
  2. 2.Department of Industrial and Enterprise Systems EngineeringThe University of Illinois at Urbana-ChampaignUSA

Personalised recommendations