Skip to main content

Introduction

  • Chapter
Integrability

Part of the book series: Lecture Notes in Physics ((LNP,volume 767))

  • 1506 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.J. Ablowitz, D. Bar Yaacov, and A.S. Fokas, On the inverse scattering transform for the Kadomtsev–Petviashvili equation, Studies Appl. Math. 69, 135–143, 1983.

    MATH  Google Scholar 

  2. M.J. Ablowitz, D.J. Kaup, A.C. Newell, and H. Segur, The inverse scattering transform – Fourier analysis for nonlinear problems, Stud. Appl. Math. 53, 249–315, 1974.

    MathSciNet  Google Scholar 

  3. M.J. Ablowitz and J.F. Ladik, Nonlinear differential–difference equations. J. Math. Phys. 16, 598–603, 1975.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. M.J. Ablowitz, A. Ramani, and H. Segur, Nonlinear evolutionary equations and ordinary differential equations of Painlevé type., Lett. Nuovo Cimento 23, 333–338, 1978.

    Article  MathSciNet  Google Scholar 

  5. M.J. Ablowitz and H. Segur, Exact linearisation of a Painlevé transcendent, Phys. Rev. Lett. 38, 1103–1106, 1977.

    Article  ADS  MathSciNet  Google Scholar 

  6. V.A. Baikov, R.K. Gazizov and N.Kh. Ibragimov, Approximate symmetries and formal linearisation. PMTF 2, 40–49, 1989 (In Russian).

    Google Scholar 

  7. D. Bambusi, Birkhoff normal form for some nonlinear PDEs, Comm. Math. Phys. 234(2), 253–285, 2003.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. D. Bambusi, Galerkin averaging method and Poincaré normal form for some quasilinear PDEs, Ann. Scula Norm. Sup. Pisa, (2006, to appear).

    Google Scholar 

  9. A.A. Belavin, Hidden symmetry of an integrable system. Pisma ZETP 32(2), 182–186, 1980.

    Google Scholar 

  10. A.A. Belavin and V.E. Zakharov, Yang-Mills equations and inverse scattering problem, Phys. Lett. B 73(1) 53–57, 1978.

    Article  ADS  MathSciNet  Google Scholar 

  11. V.A. Belinskii and V.E. Zakharov, Einstein equations by the inverse scattering problem technique and construction of exact soliton solutions, Zh. Eksp. Teor. Fiz. 75(6), 1955–1971, 1978 [Sov. Phys. JETP, 48 (6) 985–994 (1978)].

    Google Scholar 

  12. F. Beukers, J.A. Sanders, and J.P. Wang. On integrability of systems of evolution equations. J. Differ. Equations, 172(2), 396–408, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  13. A.E. Borovik, N-soliton solutions of the nonlinear Landau-Lifshitz equation, JETF Lett. 28, 629, 1978.

    Google Scholar 

  14. S.P. Burtsev, V.E. Zakharov, and A.V. Mikhailov, The Inverse Scattering Method with Variable Spectral Parameter, Theor. Math. Phy., 70, 232–241, 1987.

    MathSciNet  Google Scholar 

  15. F. Calogero, Why are certain nonlinear PDEs both widely applicable and integrable?, in “What is Integrability?” V.E. Zakharov (ed.), Springer series in Nonlinear Dynamics, 1–62, 1991.

    Google Scholar 

  16. A. Cauchy and J. Liouville. Rapport sur un mémoire de M. Lamé relatif au dernier théoréme de Fermat. C. R. Acad. Sci. Paris, 9, 359–363, 1839.

    Google Scholar 

  17. S. Chakravarty and Y. Kodama, Classification of the line-soliton solutions of KPII, arXiv:0710.1456v1 [nlin.SI] 8 Oct 2007.

    Google Scholar 

  18. E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, Transformation groups for soliton equations, Proc. RIMS Symposium on Nonlinear Integrable Systems – Classical and Qantum Theory, M. Jimbo and T. Miwa (eds.), Word Scientific Press, 1983.

    Google Scholar 

  19. R.K. Dodd and R.K. Bullough, Polynomial conserved densities for the sine-Gordon equation, Proc. R. Soc. Lond. A 352, 481–503, 1977.

    Article  ADS  MathSciNet  Google Scholar 

  20. I.Ya. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, John Wiley & Sons, Chichester, 1993.

    Google Scholar 

  21. I.Ya. Dorfman and A.S. Fokas. Hamiltonian theory over noncommutative rings and integrability in multidimensions. J. Math. Phys. 33(7), 2504–2514, 1992.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. V.S. Druma, Analytic solutions of the two-dimensional Korteweg–de Vries equation, Sov Phys. JETP Lett, 19, 381–388, 1974.

    ADS  Google Scholar 

  23. B. Dubrovin, On Hamiltonian perturbations of hyperbolic systems of conservation laws, II: universality of critical behaviour, Commun. Math. Phys. 267, 117–139 (2006).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. B. Dubrovin and Y. Zhang, Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov – Witten invariants. Math.DG/0108160, 2001.

    Google Scholar 

  25. B. Dubrovin, T.Grava, and C.Klein, On universality of critical behaviour in the focusing nonlinear Schrödinger equation, elliptic umbilic catastrophe and the tritronquée solution to the Painlevé I equation, arXiv:0704.0501v3 [math.AP], 2007.

    Google Scholar 

  26. H.R. Dullin, G.A. Gotteald and D.D. Holm, On asymptotically equivalent shallow water equations, Physica D. 10, 1–14, 2004.

    Article  ADS  Google Scholar 

  27. E. Fermi, J. Pasta, and S. Ulam, Studies of nonlinear problems, I, Los Alamos Rep. LA1940, 1955; reprod. in Nonlinear Wave Motion, A.C. Newell (ed.), Lectures in Applied Mathematics, 15, Ameriacn Math.Soc., Providence, RI, 143–196, 1974.

    Google Scholar 

  28. H. Flashka, The Toda Lattice II. Inverse scattering solution. Progr. Theor Phys 51, 703–716, 1974.

    Article  ADS  Google Scholar 

  29. A.S. Fokas, A symmetry approach to exactly solvable evolution equations, J. Math. Phys. 21(6), 1318–1325, 1980.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. A.S. Fokas, Symmetries and integrability, Stud. Appl. Math. 77, 253–299, 1987.

    MATH  MathSciNet  Google Scholar 

  31. A.S. Fokas and Q.M. Liu, Asylptotic integrability of water waves. Phys. Rev. Lett. 77(12), 2347–2351, 1996.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. A.S. Fokas and P.M. Santini. Recursion operators and bi-Hamiltonian structures in mul- tidimensions 2, Commun. Math. Phys. 116(3), 449–474, 1988.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. C.S. Gardner, J.M. Green, M.D. Kruskal, and R.M. Miura, Method for solving the Korteweg–de Vries equation, Phys. Rev. Lett. 19, 1095–1097, 1967.

    Article  MATH  ADS  Google Scholar 

  34. C.S. Gardner, J.M. Green, M.D. Kruskal, and R.M. Miura, Korteweg–de Vries equation and generaliztions. IV. Methods for exact solution, Comm. Pure Appl. Math. 27, 97–133, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  35. I. M. Gel’fand and L. A. Dickii. Asymptotic properties of the resolvent of Sturm-Liouville equations, and the algebra of Korteweg-de Vries equations, Uspehi Mat. Nauk, 30(5(185)), 67–100, 1975. English translation: Russian Math. Surveys, 30(5), 77–113, 1975.

    Google Scholar 

  36. I.M. Gel’fand and I.Ya. Dorfman, Hamiltonian operators and algebraic structures related to them, Funct. Anal. Appl. 13, 248–262, 1979.

    Article  MathSciNet  Google Scholar 

  37. M. Gurses, A. Karasu and V.V. Sokolov, On construction of recursion operator from Lax representation, JMPh, 40(12), 6473–6490, 1999.

    ADS  MathSciNet  Google Scholar 

  38. R. Hirota, Exact solutions of the Korteweg–de Vries equation for multiple collisions of solitons, Phys. Rev Lett. 27, 1192–1194, 1972.

    Article  ADS  Google Scholar 

  39. R. Hirota, Direct methods in soliton theory, in Topics in Current Physics, 17, R. Bullough and P. Caudrey (eds.), Springer-Verlag, New York, 157–175, 1980.

    Google Scholar 

  40. E.L. Ince, Ordinary Differential Equations, 1927, reprinted by Dover, New York, 1956.

    Google Scholar 

  41. M. Kac and P. van Moerbeke, On an explicitly soluble system of nonlinear differential equations related to certain Toda lattices, Advances Math. 16, 160–169, 1975.

    Article  MATH  Google Scholar 

  42. D.J. Kaup, A Higher-OrderWaterWave Equation and Its Method of Solution, Prog. Theor. Phys. 54, 396–408 (1975).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  43. Y.Kodama, Normal Form and Solitons, 319–340, in Topics in Soliton Theory and Exactly Solvable Nonlinear Equations, M. J. Ablowitz et al. (eds.), World Scientific, 1987.

    Google Scholar 

  44. Y. Kodama and A.V. Mikhailov, Obstacles to Asymptotic Integrability, 173–204, in Algebraic aspects of Integrability, I.M. Gel’fand and A.S Fokas (eds.), Birkhöuser, Boston, 1996.

    Google Scholar 

  45. S. Kowalewski, Sur le problème de la rotation d’un corps solide autour d’un point fixe. Acta. Math. 12, 177–232, 1889.

    Article  MathSciNet  Google Scholar 

  46. S. Kowalewski, Sur une propriètè du système d’équations différentielles qui défini la rotation d’un corps solide autour d’un point fixe. Acta. Math. 14, 81–93, 1889.

    Article  Google Scholar 

  47. I.M. Krichever and S.P. Novikov, Holomorphic bundles and non-linear equations. Finite-zone solutions of rank 2. Dokl. Akad. Nauk SSSR 247, 33–36, 1979 (Trans.: Soviet Math. Dokl. 20, 650–654, 1979).

    Google Scholar 

  48. I.M. Krichever and O.K. Sheinman, Lax operator algebras, arXiv:math/0701648v3 [math.RT] 15 May 2007.

    Google Scholar 

  49. M.D. Kruskal and N.J. Zabusky, Progress on the Fermi-Pasta-Ulam nonlinear string problem, Princeton Plasma Physics Laboratory Annual Report, MATTQ-21, Princeton, NJ,301–308, 1963.

    Google Scholar 

  50. M.D. Kruskal, Asymptotology in numerical computation: Progress and plans on the Fermi-Pasta-Ulam problem, Proc. IBM Scientific Computing Simposium on Large Scale Problems in Physics, IBM Data Processing Division, White Plans, NY, 43–62, 1965.

    Google Scholar 

  51. P.P. Kulish, Factorization of classical and quantum S-matrices and conservation laws,. Teor. Mat. Fiz. 26, No. 2, 198–205, 1976.

    Google Scholar 

  52. E.A. Kuznetsov and A.V. Mikhailov, On the Compete Integrability of the Two Dimensional Classical Thirring Model, Theoretical and Mathematical Physics, 30, 303, 1977.

    Google Scholar 

  53. P. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure. Appl. Math. 21(5), 467–490, 1968.

    Article  MATH  MathSciNet  Google Scholar 

  54. S.Q. Liu and Y. Zhang, On Quasitriviality and Integrability of a Class of Scalar Evolutionary PDEs, J. Geom. Phys. 57, 101–119, 2006; nlin.SI/0510019, 2005.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  55. F. Magri, A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19,1156–1162, 1978.

    Google Scholar 

  56. F. Magri, C. Morosi, and G. Tondo. Nijenhuis g-manifolds and lenard bicomplexes – a new approach to kp systems, Commun. Math. Phys. 115(3), 457–475, 1988.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  57. S.V. Manakov, Complete Integrability and Stochastization in Discrete Dynamical Systems, Zh. Eksp. Teor. Fiz. 67, 543–555, 1974.

    ADS  MathSciNet  Google Scholar 

  58. S.V. Manakov, Remarks on the integrals of the Euler equations of the n–dimensional heavy top, Func. Anal. Appl. 10, 93–94, 1976.

    MATH  MathSciNet  Google Scholar 

  59. A.V. Mikhailov, Integrability of the Two Dimensional Thirring Model, Lett. J. Exp. Theor. Phys., 23, 356–358, 1976.

    Google Scholar 

  60. A.V. Mikhailov, On the Integrability of two-dimensional Generalization of the Toda Lattice, Lett. J. Exp. Theor. Phys., 30, 443–448, 1979.

    Google Scholar 

  61. A.V. Mikhailov, Reduction in Integrable Systems. The Reduction Group. Pisma ZETP 32(2), 187–192, 1980.

    Google Scholar 

  62. A.V. Mikhailov, Reduction Problem and the Inverse Scattering method, Physica 3D, N1 & 2, p73–117, 1981.

    ADS  Google Scholar 

  63. A. V. Mikhailov and V. S. Novikov, Perturbative symmetry approach, J. Phys. A 35(22):4775–4790, 2002.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  64. A.V. Mikhailov and V.S. Novikov, Classification of integrable Benjamin-Onotype equations. Moscow Math. J. 3(4), 1293–1305, 2003.

    MATH  MathSciNet  Google Scholar 

  65. A.V. Mikhailov, V.S. Novikov, and J.P. Wang. On classification of integrable non-evolutionary equations. Stud. Appl. Math. 118, 419–457, 2007.

    Article  MathSciNet  Google Scholar 

  66. A.V. Mikhailov, A.B. Shabat, and R.I. Yamilov. Extension of the module of invertible transformations. Classification of integrable systems. Comm. Math. Phys. 115(1), 1–19, 1988.

    Article  ADS  MathSciNet  Google Scholar 

  67. A.V. Mikhailov and V.V. Sokolov, Integrable ODEs on Associative Algebras, Comm. Math. Phys. 211(1), 231–251, 2000.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  68. A.V. Mikhailov, V.V. Sokolov, A.B. Shabat, The symmetry approach to classification of integrable equations, in What is Integrability? V.E. Zakharov (ed.), Springer series in Nonlinear Dynamics, 115–184, 1991.

    Google Scholar 

  69. A.V. Mikhailov and V.E. Zakharov, On the Integrability of Classical Spinor Models in Two Dimensional Space-time, Comm. Math. Phys., 74, 21–40, 1980

    Google Scholar 

  70. R.M. Miura, Korteweg–de Vries equation and generaliztions. I. A remarkable explicit non-linear teransformation, J. Math. Phys. 9, 1202–1204, 1968.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  71. A.C. Newell, Solitons in Mathematics an Physics, SIAM, Philadelphia, 1985.

    Google Scholar 

  72. S.P. Novikov, Periodic problem for the Korteweg–de Vries equation, Func. Anal. Appl. 4, 54–66, 1974.

    Google Scholar 

  73. P.J. Olver, Evolution equations possessing infinitely many symmetries, J. Math. Phys. 18(6), 1212–1215, 1977.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  74. J. Praught and R.G. Smirnov, Andrew Lenard: A Mistery Unraveled, SIGMA, 1, Paper 005, 7 pages, 2005.

    Google Scholar 

  75. C. Rogers and W.K. Schief, Böcklund and Darboux Transformations Geometry and modern applications in soliton theory, Cambridge texts in Applied Mathematics, CUP, 2002.

    Google Scholar 

  76. J.A. Sanders and J.P. Wang. On the integrability of homogeneous scalar evolution equations. J. Differ. Equations 147(2), 410–434, 1998.

    Google Scholar 

  77. E.K. Sklyanin, On complete integrability of the Landau-Lifschitz equation, preprint LOMI, E-3-79, Leningrad, 1979.

    Google Scholar 

  78. G. Tzitzeica, Sur une nouvelle classe de surfaces, C.R.Acad. Sci. Paris 144, 1257–1259, 1907.

    MATH  Google Scholar 

  79. A.P. Veselov and S.P. Novikov, Finite–gap two–dimensional potential Schrödinger operators. Explicit formulas and evolution equations. Dokl. Akad. Nauk SSSR, 279, 20–24, 1984.

    MathSciNet  Google Scholar 

  80. H.D. Wahlquist and F.B. Estabrook, Prolongation structures in nonlinear evolution equations J. Math. Phys. 16,. 1–7, 1975.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  81. J.P. Wang. Symmetries and Conservation Laws of Evolution Equations. PhD thesis, Vrije Universiteit/Thomas Stieltjes Institute, Amsterdam, 1998.

    Google Scholar 

  82. J.Weiss, M. Tabor, and G. Carnevale, The Painlevé property for partial differential equations J. Math. Phys. 24, 522–526, 1983.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  83. N.J. Zabusky and M.D. Kruskal, Interaction of solitonsin a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett. 15, 240–243, 1965.

    Article  ADS  MATH  Google Scholar 

  84. V.E. Zakharov and S.V. Manankov, Multidimensional nonlinear integrable systems and methods for constructing their solutions, Zap. Nauchn. Sem. LOMI, 133, 77–91, 1984.

    MATH  Google Scholar 

  85. V.E. Zakharov and A.V. Mikhailov, Relativistically Invariant Models of Field Theory, Integrable by Inverse Transform Method, J. Exper. Theor. Phys., 74, 1953–1973, 1978.

    MathSciNet  Google Scholar 

  86. V.E. Zakharov and A.V. Mikhailov, The Inverse Scattering Method with the Spectral Parameter on Algebraic Curves, Funct. Anal. Appl. 17, 1–6, 1983.

    Article  MathSciNet  Google Scholar 

  87. V.E. Zakharov and E.I. Schulman, Integrability of Nonlinear Systems and Perturbation Theory. 185–250, in What is Integrability, V.E. Zakharov (ed.), Springer–Verlag, Berlin Heidelberg, 1991.

    Google Scholar 

  88. V.E. Zakharov and A.B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Zh. Eksp. Teor. Fiz. 61(1),118–134, 1971, [Sov. Phys. JETP 34 (1) 62–69 (1972)].

    MathSciNet  Google Scholar 

  89. V.E. Zakharov and A.B. Shabat, A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem, Func. Annal. Appl. 8(3), 226–235, 1974.

    Article  MATH  Google Scholar 

  90. V.E. Zakharov and A.B. Shabat, A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem II, Func. Annal. Appl. 13(3), 13–22, 1979.

    MathSciNet  Google Scholar 

  91. A.V. Zhiber and A.B. Shabat, Klein-Gordon equations with a nontrivial group, Sov. Phys. Dokl. 247(5), 1103–1107, 1979.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mikhailov, A. (2009). Introduction. In: Mikhailov, A.V. (eds) Integrability. Lecture Notes in Physics, vol 767. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88111-7_1

Download citation

Publish with us

Policies and ethics