Skip to main content

Comparison of Effective Assessment Functions for Optimized Sensor System Design

  • Conference paper
Applications of Soft Computing

Part of the book series: Advances in Soft Computing ((AINSC,volume 52))

  • 732 Accesses

Summary

Currently, the design of the signal processing and recognition architecture for intelligent sensor systems is still a tedious and labor-intensive task. Optimization techniques, e.g., from gradient descent, stochastic search or evolutionary computation are available to accelerate and automate this procedure. However, appropriate assessment or cost functions are required. This paper presents effective state-of-the-art techniques and compares them to two novel, salient modifications. These are a normalized compactness measure, which has salient properties as it is non-parametric, easy-to-use, fine-grained, competitive performing, and the sum-volumetric k-NN classifier. The aims of this paper are to compare the computation complexities, discriminant properties or capabilities, and sensitivity to control parameter. The methods will be described and compared for the task of dimension reduction by feature selection. Achieved results underpin their saliency for general optimized sensor system design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature Selection. J. of Machine Learning Research 3, 1157–1182 (2003)

    Article  MATH  Google Scholar 

  2. Gutierrez-Osuna, R., Nagle, H.T.: A method for evaluating data- preprocessing techniques for odor classification with an array of gas sensors. IEEE Trans. on Systems, Man and Cybernetics B 29(5), 626–632 (1999)

    Article  Google Scholar 

  3. Raymer, M.L., Punch, W.F., Goodman, E.D., Kuhn, L.A., Jain, A.K.: Dimensionality Reduction Using Genetic Algorithms. IEEE Trans. on Evolutionary Computation 4(2), 164–171 (2000)

    Article  Google Scholar 

  4. Iswandy, K., König, A., Fricke, T., Baumbach, M., Schuetze, A.: Towards Automated Configuration of Multi-Sensor Systems Using Evolutionary Computation - A Method and a Case Study. J. Computational and Theoretical Nanoscience 2(4), 574–582 (2005)

    Article  Google Scholar 

  5. Iswandy, K., König, A.: Feature selection with acquisition cost for optimizing sensor system design. Adv. Radio Sci. 4, 135–141 (2006)

    Article  Google Scholar 

  6. König, A.: Interactive visualization and analysis of hierarchical neural projections for data mining. IEEE Trans. on Neural Networks 11(3), 615–624 (2000)

    Article  Google Scholar 

  7. König, A., Mayr, C., Bormann, T., Klug, C.: Dedicated Implementation of Embedded Vision Systems Employing Low-Power Massively Parallel Feature Computation. In: Proc. of the 3rd VIVA-Workshop on Low-Power Information Processing, pp. 1–8 (2002)

    Google Scholar 

  8. König, A., Gratz, A.: Advanced methods for the analysis of Semiconductor Manufacturing Process Data. In: Pal, N.R., Jain, L.C. (eds.) Advanced Techniques in Knowledge Discovery and Data Mining, pp. 27–74. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Marques de Sá, J.P.: Pattern Recognition: Concept, Methods and Applications. Springer, Heidelberg (2001)

    Google Scholar 

  10. Fukunaga, K.: Introduction to statistical pattern recognition, 2nd edn. Academic Press Limited, London (1990)

    MATH  Google Scholar 

  11. http://www.ics.uci.edu/~mlearn/MLRepository.html

  12. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proc. of IEEE Int. Conf. on Neural Networks (ICNN), vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  13. Kennedy, J., Eberhart, R.C.: A Discrete Binary Version of The Particle Swarm Algorithm. In: Proc. of Conf. on System, Man, and Cybernetics, pp. 4104–4109 (1997)

    Google Scholar 

  14. Agrafiotis, D.K., Cedenõ, R.C.: Feature Selection for Structure - Activity Correlation Using Binary Particle Swarms. J. Med. Chem. 45, 1098–1107 (2002)

    Article  Google Scholar 

  15. Wang, X., Yang, J., Peng, N., Teng, X.: Finding Minimal Rough Set Reducts with Particle Swarm Optimization. Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, 451–460 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Iswandy, K., König, A. (2009). Comparison of Effective Assessment Functions for Optimized Sensor System Design. In: Avineri, E., Köppen, M., Dahal, K., Sunitiyoso, Y., Roy, R. (eds) Applications of Soft Computing. Advances in Soft Computing, vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88079-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88079-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88078-3

  • Online ISBN: 978-3-540-88079-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics