Skip to main content

Part of the book series: Understanding Complex Systems ((UCS))

Summary

Complex systems are the new scientific frontier which was emerging in the past decades with advance of modern technology and the study of new parametric domains in natural systems. An important challenge is, contrary to classical systems studied so far, the great difficulty in predicting their future behaviour from an initial instant as by their very structure the interactions strength between system components is shielding completely their specific individual features. So these systems are a counterexample to reductionism so strongly influential in Science with Cartesian method only valid for complicated systems. Whether complex systems are obeying strict laws like classical systems is still unclear, but it is however possible today to develop methods which allow to handle some dynamical properties of such system. They should comply with representing system self organization when passing from complicated to complex, which rests upon the new paradigm of passing from classical trajectory space to more abstract trajectory manifolds associated to natural system invariants characterizing complex system dynamics. So they are basically of qualitative nature, independent of system state space dimension and, because of generic impreciseness, privileging robustness to compensate for not well known system parameter and functional variations. This points toward the importance of control approach for a complex system, the more as for industrial applications there is now evidence that transforming a complicated man made system into a complex one is extremely beneficial for overall performance improvement. But this requires larger intelligence delegation to the system, and a well defined control law should be set so that a complex system described in very general terms can behave in a prescribed way. The method is to use the notion of equivalence class within which the system is forced to stay by action of the control law constructed in explicit terms from mathematical (and even approximate) representation of system dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • [1] S. Johnson, Emergence, Penguin, New-York, 2001

    Google Scholar 

  • M.A. Bedau, Weak Emergence, In J. Tomberlin (Ed.) Philosophical Perspectives: Mind, Causation, and World, Vol. 11, Blackwell pp.375-399, 1997

    Google Scholar 

  • S. Strogatz, Sync: The Emerging Science of Spontaneous Order, 2003, Theia

    Google Scholar 

  • G. Di Marzo Serugendo, Engineering Emergent Behaviour: A Vision, Multi-Agent-Based Simulation III. 4th International Workshop, MABS 2003 Melbourne, Australia, July 2003, David Hales et al. (Eds), LNAI 2927, Springer, 2003

    Google Scholar 

  • E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems, Oxford University Press, 1999, ISBN 0195131592

    Google Scholar 

  • H. Nwana, Software Agents : an Overview. The Knowledge Engineering Review, Vol.11(3), pp.205-244, 1996

    Article  Google Scholar 

  • R. Conte, C. Castelfranchi, Simulating multi agent interdependencies. A two-way approach to the micro-macro link, in Klaus G. Troitzsch et al. (Eds.), Social science micro-simulation, Springer pp.394-415, 1995

    Google Scholar 

  • S.A. DeLoach, Multi-agent Systems Engineering: A Methodology And Language for Designing Agent Systems, Procs. Agent-Oriented Information Systems ’99 (AOIS’99), 1999

    Google Scholar 

  • J. Ferber, O. Gutknecht, F. Michel, From Agents To Organizations: An Organizational View of Multi- Agent Systems, in “Agent-Oriented Software Engineering IV, AOSE 2003”, Paolo Giorgini et al. (Eds.), LNCS 2935, Springer pp.214-230, 2004

    Google Scholar 

  • C. Bernon, M.-P. Gleizes, S. Peyruqueou, G. Picard, ADELFE, a Methodology for Adaptive Multi-Agent Systems Engineering, 3rd International Workshop on “Engineering Societies in the Agents World III” (ESAW 2002), Petta, Tolksdorf & Zambonelli (Eds.) LNCS 2577, Springer pp.156-169, 2003

    Google Scholar 

  • J. Fromm, Types and Forms of Emergence, http://arxiv.org/abs/nlin.AO/0506028

  • P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, J. Mylopoulos, A knowledge level software engineering methodology for agent oriented programming, 5th International Conference on Autonomous Agents, ACM Press pp.648-655, 2001

    Google Scholar 

  • J. Lind, Iterative Software Engineering for Multi-agent Systems - The MASSIVE Method, LNCS 1994, Springer, 2001

    Google Scholar 

  • N. Jennings, On Agent-Based Software Engineering, Artificial Intelligence, Vol. 117(2) pp.277-296, 2000

    Article  MATH  Google Scholar 

  • J.O. Kephart, Research Challenges of Autonomic Computing, Proc. ICSE 05 pp.15-22, 2005

    Google Scholar 

  • M. Kolp, P. Giorgini, J. Mylopoulos, A goal-based organizational perspective on multi-agent architectures, In Intelligent Agents VIII: Agent Theories, Architectures, and Languages, LNAI 2333, Springer pp.128-140, 2002

    Google Scholar 

  • P. Maes, Modelling Adaptive Autonomous Agents, http://citeseer.ist.psu.edu/42923.html

  • K.P. Sycara, Multi-agent Systems, AI Magazine Vol. 19 No. 2 (1998) 79-92

    Google Scholar 

  • R. Abbott, Emergence Explained, to be published, see http//cs.calstatela.edu/ wiki/ images/9/90/Emergence-Explained.pdf

  • D. Yamins, Towards a Theory of “Local to Global” in Distributed Multi-Agent Systems, In Proceedings of the International Joint Conference on Autonomous Agents and Multi Agent Systems (AAMAS 2005). To appear

    Google Scholar 

  • W. Vogels, R. van Renesse, K. Birman, The Power of Epidemics: Robust Communication for Large-Scale Distributed Systems, ACM SIGCOMM Computer Communication Review Vol. 33(1), pp.131-135, 2003

    Article  Google Scholar 

  • F. Zambonelli, N.R. Jennings, M. Wooldridge, Developing Multi-agent Systems: The Gaia Methodology, ACM Transactions on Software Engineering and Methodology, Vol. 12(3), pp.317-370, 2003

    Article  Google Scholar 

  • [2] M. Gell-Mann, What is Complexity, Complexity J., Vol.1(1), pp.16, 1995

    MATH  MathSciNet  Google Scholar 

  • The Quark and the Jaguar - Adventures in the simple and the complex, Little, Brown & Company, New-York, 1994

    Google Scholar 

  • R.K. Standish, On Complexity and Emergence, Complexity International, Vol.9, pp.1-6, 2004

    MathSciNet  Google Scholar 

  • H. Morowitz, The Emergence of Complexity, ibid. pp.4

    Google Scholar 

  • G. Nicolis, I. Prigogine, A la Rencontre du Complexe, PUF, Paris, 1992

    Google Scholar 

  • J. Fromm, The Emergence of Complexity, Kassel University Press, 2004

    Google Scholar 

  • S.Y. Auyang, Foundations of Complex-system theories, Cambridge University Press, 1998

    Google Scholar 

  • J. Holland, Hidden Order : How Adaptation Builds Complexity, Helix Books, Addison Wesley, New-York, 1995

    Google Scholar 

  • M. Waldrop, Complexity : the Emerging Science at the Edge of Order and Chaos, Touchstone, NY, 1993

    Google Scholar 

  • Yu.L. Klimontovich, Entropy, Information, and Criteria of Order in Open Systems, Nonlinear Phenomena in Complex Systems, Vol.2(4), pp.1-25, 1999

    Google Scholar 

  • L.O. Chua, CNN : a Paradigm for Complexity, World Scientific Publ., 1998

    Google Scholar 

  • G. Nicolis, I. Prigogine, Exploring Complexity : an Introduction, W.H. Freeman and Co, NY, 1989

    Google Scholar 

  • O. Babaoglu, M. Jelasity, A. Montresor et al. (Eds.), Self-star Properties in Complex Information Systems: Conceptual and Practical Foundations, Springer LNCS 3460, 2005

    Google Scholar 

  • S.A. Kauffman, The Origins of Order : Self-Organization and Selection in the Universe, Oxford Univ. Press, 1993

    Google Scholar 

  • R. Feistel, W. Ebeling, Evolution of Complex Systems, Kluver, Dordrecht, 1989

    Google Scholar 

  • R. Badii and A. Politi, Complexity: Hierarchical structures and scaling in physics, Cambridge University Press, Cambridge, Mass., 1997

    MATH  Google Scholar 

  • B. Goodwin, How the Leopard Changed Its Spots: The Evolution of Complexity, Weidenfield 8 Nicholson, London, 1994

    MATH  Google Scholar 

  • B. Parker, Chaos in the Cosmos : the Stunning Complexity of the Universe, Plenum Press, 1996

    Google Scholar 

  • G. Parisi, Complex Systems : a Physicist’s Viewpoint, Internet arxiv:cond-mat/0205297

    Google Scholar 

  • [3] W.R. Ashby, Principles of the self-organizing system, in “Principles of Self-Organization: Transactions of the University of Illinois Symposium”, H. Von Foerster and G. W. Zopf, Jr. (eds.), Pergamon Press, pp. 255-278, 1962

    Google Scholar 

  • E. Jantsch, Self Organizing Universe: Scientific and Human Implications, Pergamon Press, 1980

    Google Scholar 

  • A.D. Linkevich, Self-organization in Intelligent Multi-agent Systems and Neural Networks, Nonlinear Phenomena in Complex Systems, Part I : Vol.4(1), pp.18-46, 2001; Part II : Vol.4(3), pp.212-249, 2001

    MathSciNet  Google Scholar 

  • Per Bak, How Nature Works: The Science of Self-Organized Criticality, Copernicus Press, 1996

    Google Scholar 

  • D.E.J. Blazis, Introduction to the Proceedings of the Workshop “The Limits to Self-Organization in Biological Systems”, The Biological Bulletin Vol. 202(3), pp.245-246, 2002

    Google Scholar 

  • Jaegwon Kim, Philosophy of Mind, Westview Press, 1996

    Google Scholar 

  • Wei-Min Shen et al., Hormone-inspired self-organization and distributed control of robotic swarms, Autonomous Robots, Vol.17, pp.93-105, 2004

    Google Scholar 

  • W. Ebeling, Entropy and Information in Processes of Self Organization : Uncertainty and Predictability, Physica A, Vol.194( 1-4), pp.563-575, 1993

    Article  Google Scholar 

  • S. Camazine, J.L. Deneubourg, N.R. Franks, J. Sneyd, G. Theraulaz, E. Bonabeau, Self organization in Biological Systems, Princeton Univ. Press, Princeton, New-Jersey, 2002

    Google Scholar 

  • G. Nicolis, I. Prigogine, Self Organization in Non Equilibrium Systems, Wiley, New-York, 1977

    Google Scholar 

  • G. Di Marzo Serugendo et al., Engineering Self- Organising Systems, LNAI 2977, Springer, 2004

    Google Scholar 

  • Yu.L. Klimontovitch, Criteria for Self Organization, Chaos, Solitons & Fractals, Vol.5(10), pp.1985-1995, 2002

    Google Scholar 

  • H. Haken, Information and Self-Organization, Springer, Berlin, 1988

    MATH  Google Scholar 

  • F.E. Yates (ed) Self-Organizing Systems: The Emergence of Order , Plenum Press, 1987

    Google Scholar 

  • S. Nolfi, D. Floreano, Evolutionary Robotics : the Biology, Intelligence and Technology of Self-organizing Machines, The MIT Press, Cambridge, Mass., 2000

    Google Scholar 

  • R. Serra, M. Andretta, M. Compiani, G. Zanarini, Introduction to the Physics of Complex Systems (the Mesoscopic Approach to Fluctuations, Nonlinearity and Self-Organization), Pergamon Press, 1986

    Google Scholar 

  • [4] R.C. Hilborn, Chaos and Nonlinear Dynamics, Oxford Univ. Press, Oxford, UK, 1994

    MATH  Google Scholar 

  • T. Kapitaniak, Chaos for Engineers : Theory, Applications and Control, Springer, Berlin, 1998

    MATH  Google Scholar 

  • I. Prigogine, Les Lois du Chaos, Nouvelle Biblioth簵e Scientifique, Flammarion, Paris, 1993

    Google Scholar 

  • S.H. Strogatz, Nonlinear Dynamics and Chaos, Addison-Wesley, Reading, 1994

    Google Scholar 

  • Y. Bar-Yam, Dynamics of Complex Systems, Addison-Wesley, Reading, 1997

    MATH  Google Scholar 

  • [5] M. Hirsch, C. Pugh, M. Shub, Invariant Manifolds, Lecture Notes in Math. 583, Springer-Verlag, Berlin, 1977

    Google Scholar 

  • A. Goriely, Integrability and Nonintegrability of Dynamical Systems, World Scientific Publ., 2001

    Google Scholar 

  • [6] P.J. Antsaklis, K.M. Passino, An Introduction to Intelligent and Autonomous Control, Kluwer Acad. Publ., Norwell, MA, 1993

    MATH  Google Scholar 

  • S. Russell, P. Norvig, Artificial Intelligence : a Modern Approach, Prentice-Hall, 1995

    Google Scholar 

  • L.X. Wang, Adaptive Fuzzy Systems and Control : Design and Stability Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1994

    Google Scholar 

  • M. Brown, C. Harris, Neuro Fuzzy Adaptive Modelling and Control, Prentice Hall, Englewood Cliffs, NJ, 1994

    Google Scholar 

  • B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence. Englewood Cliffs, NJ: Prentice-Hall, 1991

    Google Scholar 

  • G. Weiss, Multiagent Systems. A Modern Approach to Distributed Artificial Intelligence, the MIT Press, Cambridge, Mass. 1999

    Google Scholar 

  • E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence : from Natural to Artificial Systems, Oxford Univ. Press, New-York, 1999

    MATH  Google Scholar 

  • [7] B. Kosko, Global Stability of Generalized Additive Fuzzy Systems, IEEE Trans. On Systems, Man, and Cybernetics, Part C, Vol.28(3), p.441, 1998

    Article  Google Scholar 

  • [8] M. Cotsaftis, Recent Advances in Control of Complex Systems, Survey Lecture, Proc. ESDA’96, Montpellier, France, ASME, Vol.I, (1996), p.1

    Google Scholar 

  • [9] M. Cotsaftis, Vision Limitation for Robot Deformation Control, Proc. 5th Intern. Conf. on Mechatronics and Machine Vision in Practice (M2VIP), Nanjing, China, (1998), p.393

    Google Scholar 

  • M. Cotsaftis, Application of Energy Conservation to Control of Deformable Systems, Proceedings 3rd Workshop on Systems Science and its Application, Beidaihe, China, (1998), p.42

    Google Scholar 

  • [10] H.C. von Baeyer, Maxwell’s Demon, Random House, 1998

    Google Scholar 

  • [11] V.G. Majda, Sobolev Spaces, Springer-Verlag, New-York, 1985

    Google Scholar 

  • L. Amerio, G. Prouse, Almost-Periodic Functions and Functional Equations, Van Nostrand-Reinhold, New-York, 1971

    MATH  Google Scholar 

  • [12] E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol.I, Springer-Verlag, New-York, 1986

    Google Scholar 

  • D.R. Smart, Fixed Point Theorems, Cambridge Univ. Press, Mass., 1980

    MATH  Google Scholar 

  • [13] A.M. Lyapounov, Le Probleme General de la Stabilite du Mouvement, Ann. Fac. Sciences Toulouse, 1907

    Google Scholar 

  • [14] H. Poincare, Les Methodes Nouvelles de la Mecanique Celeste, 3 Vol., Gauthier-Villars, Paris, 1892-1899

    Google Scholar 

  • [15] M. Cotsaftis, Comportement et Controle des Systemes Complexes, Diderot, Paris, 1997

    MATH  Google Scholar 

  • [16] B.G. Pachpatte, Mathematical Inequalities, North Holland, Amsterdam, 2005

    Book  MATH  Google Scholar 

  • [17] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, Dover Publ., New-York, 1965

    Google Scholar 

  • [18] M. Cotsaftis, Popov Criterion Revisited for Other Nonlinear Systems, Proc. ISIC 2003(International Symposium on Intelligent Control), Oct 5-8, Houston, 2003

    Google Scholar 

  • [19] M. Cotsaftis, Robust Asymptotic Control for Intelligent Unknown Mechatronic Systems, ICARCV 2006, Singapore, Dec 5-8, 2006, to be published

    Google Scholar 

  • [20] J. Appell, P.P. Zabrijko, Nonlinear Superposition Operators, Cambridge University Press, Mass., 1990.

    MATH  Google Scholar 

  • [21] M. Farge, Wavelet Transforms and their Applications to Turbulence, Annu. Rev. Fluid Mech., Vol.24, pp.395-457,1992; M. Farge, K. Schneider, G. Pellegrino, A.A. Wray, R.S. Rogallo, Coherent Vortex Extraction in 3D Homogeneous Turbulence : Comparison between CVS-wavelet and POD-Fourier Decompositions, Phys. Fluids, Vol.15(10), pp.2886-2896

    Article  MathSciNet  Google Scholar 

  • B. Nikolaenko, C. Foias, R.Temam, The Connection between Infinite Dimensional and Finite Dimensional Dynamical Systems, AMS, 1992

    Google Scholar 

  • K.A. Morris, Design of Finitedimensional Controllers for Infinite-dimensional Systems by Approximation, J. of Mathematical Systems, Estimation and Control, Vol.4(2), pp.1-30, 1994

    Google Scholar 

  • [22] D. Kondepudi, I. Prigogine, Modern Thermodynamics : from Heat Engines to Dissipative Structures, J. Wiley and Sons, NY, 1997

    Google Scholar 

  • [23] S. Chandrasekhar, Stochastic Problems in Physics and Astronomy, Rev. Mod. Phys., Vol.15, no. 1, pp.1- 89, 1943

    Google Scholar 

  • [24] M. Cotsaftis, Lectures on Advanced Dynamics, Taiwan Univ., 1993

    Google Scholar 

  • [25] S. Lefschetz, Stability of Nonlinear Control Systems, Academic Press, NY, 1965

    MATH  Google Scholar 

  • M.A. Aizerman, F.R. Gantmacher, Absolute Stability of Regulator Systems, Holden-Day, San Franscisco, 1964

    Google Scholar 

  • G.E. Dullerud, F. Paganini, A Course in Robust Control Theory : a Convex Approach, Springer-Verlag, New-York, 2000

    Google Scholar 

  • J.C.S. Hsu, A.U. Meyer, Modern Control Principles and Applications, McGraw-Hill, New-York, 1968

    MATH  Google Scholar 

  • S. Arimoto, Control Theory of Nonlinear Mechanical Systems : a Passivity Based and Circuit Theoretic Approach, Oxford Univ. Press, Oxford, UK, 1996

    Google Scholar 

  • J.H. Burl, Linear Optimal Control, H_2 and H_∞ Methods, Addison-Wesley Longman, Menlo Park, CA, 1999

    Google Scholar 

  • G.A. Leonov, I.V. Ponomarenko, V.B. Smirnova, Frequency Domain Methods for Nonlinear Analysis : Theory and Applications, World Scientific Publ., Singapore, 1996

    MATH  Google Scholar 

  • [26] M. Cotsaftis, Beyond Mechatronics ; Toward Global Machine Intelligence, Proc. ICMT¡2005, Kuala- Lumpur, Dec. 6-8, 2005

    Google Scholar 

  • [27] M. Cotsaftis, From Trajectory Control to Task Control . Emergence of Self Organization in Complex Systems, in Emergent Properties in Natural and Artificial Dynamical Systems, M.A. Aziz-Alaoui, C. Bertelle, Eds, Springer-Verlag, pp.3-22, 2006

    Google Scholar 

  • M. Cotsaftis, Global Control of Flexural and Torsional Deformations of One-Link Mechanical System, Kybernetika, Vol.33, no. 1, p.75, 1997

    MATH  MathSciNet  Google Scholar 

  • [28] M. Cotsaftis, Robust Asymptotically Stable Control for Unknown Robotic Systems, Proceedings 1998 Symposium on ISSPR, Hong Kong, Vol.I, p.267, 1998

    Google Scholar 

  • [29] M. Cotsaftis, Merging Information Technologies with Mechatronics . The Autonomous Intelligence Challenge, Proc. IEECON¡2006, Nov.6-10, 2006, to be published

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cotsaftis, M. (2009). A Passage to Complex Systems. In: Bertelle, C., Duchamp, G.H., Kadri-Dahmani, H. (eds) Complex Systems and Self-organization Modelling. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88073-8_1

Download citation

Publish with us

Policies and ethics