Skip to main content

A New Multi-objective Control Design for Autonomous Vehicles

  • Conference paper
Optimization and Cooperative Control Strategies

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 381))

Abstract

In this chapter, a nonlinear control design is proposed for a team of wheeled mobile robots to cooperate in a dynamically evolving environment to track their virtual leader(s), while avoiding static and dynamic obstacles. Toward this end, a multi-objective control problem is formulated, and the control is synthesized by generating a potential field force for each objective and combining them through analysis and design. To the best of our knowledge, the proposed design is the first systematic approach to accommodate and achieve the multiple objectives of cooperative motion, tracking virtual command vehicle(s), obstacle avoidance, and oscillation suppression. Basic conditions and key properties are derived using rigorous Lyapunov analysis and theoretical proof. The results are illustrated by several simulation examples including cooperative motion of a team of vehicles moving through urban settings with static and moving obstacles, as well as narrow passages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balch, T., Arkin, R.C.: Behavior-based formation control for multi-robot team. IEEE Transactions on Robotics and Automation 14(6), 926–939 (1998)

    Article  Google Scholar 

  2. Lewis, M.A., Tan, K.H.: High Precision Formation Control of Mobile Robots Using Virtual Structures. Autonomous Robots 4(4), 387–403 (1997)

    Article  Google Scholar 

  3. Ren, W., Beard, R.W.: Virtual Structure based Spacecraft Formation Control with Formation Feedback. In: AIAA Guidance and Control Conference, Monterey, CA, AIAA Paper no. 2002-4963 (August 2002)

    Google Scholar 

  4. Do, K.D., Pan, J.: Nonlinear formation control of unicycle-type mobile robots. Robotics and Autonomous Systems 55(3), 191–204 (2007)

    Article  Google Scholar 

  5. Young, B.J., Beard, R.W., Kelsey, J.M.: A Control Scheme for Improving Multi-Vehicle Formation Maneuvers. In: American Control Conference, Arlington, VA, June 25-27, pp. 704–709 (2001)

    Google Scholar 

  6. Edwards, D.B., Bean, T., Odell, D., Anderson, M.J.: A Leader-Follower Algorithm for Multiple AUV Formations. In: Proceedings of 2004 IEEE/OES Autonomous Underwater Vehicles, Sebasco Estates, Maine, June 17-18 (2004)

    Google Scholar 

  7. Lawton, J., Beard, R., Young, B.: A Decentralized Approach To Formation Maneuvers. IEEE Transactions on Robotics and Automation 19(6), 933–941 (2003)

    Article  Google Scholar 

  8. Tanner, H.G., Pappas, G.J., Kumar, V.: Leader-to-Formation Stability. IEEE Transactions on Robotics and Automation 20(3), 433–455 (2004)

    Article  Google Scholar 

  9. Consolini, L., Morbidi, F., Prattichizzo, D., Tosques, M.: A Geometric Characterization of Leader-Follower Formation Control. In: Proc. of the IEEE International Conference on Robotics and Automation, Rome, April 10-14, 2007, pp. 2397–2402 (2007)

    Google Scholar 

  10. Mesbahi, M., Hadaegh, F.Y.: Graphs, matrix inequalities, and switching for the formation flying control of multiple spacecraft. In: American Control Conference, San Diego, CA, June 2-4, 1999, pp. 4148–4152 (1999)

    Google Scholar 

  11. Koren, Y., Borenstein, J.: Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation. In: Proceeding of the IEEE International Conference on Robotics and Automation, pp. 1398–1404 (1991)

    Google Scholar 

  12. Stipanovic, D.M., Shankaran, S., Tomlin, C.J.: Multi-agent avoidance control using an M-matrix property. Electronic Journal of Linear Alebra 12, 64–72 (2005)

    MathSciNet  Google Scholar 

  13. Leitmann, G., Skowronski, J.: Avoidance control. Journal of Optimization Theory and Applications 23, 581–591 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  14. Leitmann, G., Skowronski, J.: A note on avoidance control. Optimal Control Applications & Methods 4, 335–342 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  15. Leonard, N.E., Fiorelli, E.: Virtual leaders, artificial potentials and coordinated control of groups. In: Proc. IEEE Conference on Decision and Control, Orlando, Florida, USA, December 2001, vol. 3, p. 2968–2973 (2001)

    Google Scholar 

  16. Do, K.D.: Bounded Controllers for Formation Stabilization of Mobile Agents With Limited Sensing Ranges. IEEE Transactions on Automatic Control 52, 569–576 (2007)

    Article  MathSciNet  Google Scholar 

  17. Mastellone, S., Stipanovic, D.M., Graunke, C.R., Intlekofer, K.A., Spong, M.W.: Formation Control and Collision Avoidance for Multi-agent Non-holonomic Systems: Theory and Experiments. The International Journal of Robotics Research 27(1), 107–126 (2008)

    Article  Google Scholar 

  18. Qu, Z., Wang, J., Hull, R.A.: Cooperative Control of Dynamical Systems with Application to Autonomous Vehicles. IEEE Transactions on Automatic Control (to appear, May 2008)

    Google Scholar 

  19. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chunyu, J., Qu, Z., Pollak, E., Falash, M. (2009). A New Multi-objective Control Design for Autonomous Vehicles. In: Hirsch, M.J., Commander, C.W., Pardalos, P.M., Murphey, R. (eds) Optimization and Cooperative Control Strategies. Lecture Notes in Control and Information Sciences, vol 381. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88063-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88063-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88062-2

  • Online ISBN: 978-3-540-88063-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics