Skip to main content

The Maximum Weight Independent Set Problem for Data Association in Multiple Hypothesis Tracking

  • Conference paper

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 381))

Abstract

Multitarget tracking (MTT) hinges upon the solution of a data association problem in which observations across scans are partitioned into tracks and false alarms so that accurate estimates of true targets can be recovered. In this chapter, we describe a methodology for solving this data association problem as a maximum weight independent set problem (MWISP). This MWISP approach has been used successfully for almost a decade in fielded sensor systems using a multiple hypothesis tracking (MHT) framework, but has received virtually no attention in the tracking literature, nor has it been recognized as an application in the clique/independent set literature. The primary aim of this chapter is to simultaneously fill these two voids. Second, we show that the MWISP formulation is equivalent to the multidimensional assignment (MAP) formulation, one of the most widely documented approaches for solving the data association problem in MTT. Finally, we offer a qualitative comparison between the MWISP and MAP formulations, while highlighting other important practical issues in data association algorithms that are commonly overlooked by the optimization community.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bar-Shalom, Y., Fortmann, T.E.: Tracking and Data Association. Academic Press, Boston (1988)

    MATH  Google Scholar 

  2. Bar-Shalom, Y.: Multitarget-Multisensor Tracking: Applications and Advances, vol. 1. Artech House, Norwood (1990)

    Google Scholar 

  3. Bar-Shalom, Y., Blackman, S.S., Fitzgerald, R.J.: Dimensionless Score Function for Multiple Hypothesis Tracking. IEEE Transactions on Aerospace and Electronic Systems 43(1), 392–400 (2007)

    Article  Google Scholar 

  4. Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M.: The Maximum Clique Problem. In: Du, D.-Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, vol. A (suppl.), pp. 1–74. Kluwer Academics, Boston (1999)

    Google Scholar 

  5. Blackman, S.S.: Association and Fusion of Multiple Sensor Data. In: Bar-Shalom, Y. (ed.) Multitarget-Multisensor Tracking: Applications and Advances, ch. 6, vol. I. Artech House, Norwood (1990)

    Google Scholar 

  6. Blackman, S.S.: Multiple Hypothesis Tracking for Multiple Target Tracking. IEEE Aerospace and Electronic Systems Magazine 19(1) (January 2004)

    Google Scholar 

  7. Blackman, S.S., Dempster, R.: Description of the Upgraded Early Warning Radar (UEWR) MHT tracker (revised), Technical Report, Raytheon Corporation (2002)

    Google Scholar 

  8. Blackman, S.S., Popoli, R.: Design and Analysis of Modern Tracking Systems. Artech House, Norwood (1999)

    MATH  Google Scholar 

  9. Borndorfer, R.: Aspects of Set Packing, Partitioning, and Covering, Ph.D. thesis, Technical University of Berlin (1998)

    Google Scholar 

  10. Capponi, A.: A Polynomial Time Algorithm for Data Association in Multitarget Tracking. IEEE Transactions on Aerospace and Electronic Systems 40(4), 1398–1410 (2004)

    Article  Google Scholar 

  11. Daum, F.E.: The Importance of Resolution in Multiple Target Tracking. In: Drummond, O.E. (ed.) Signal and Data Processing of Small Targets 1994. SPIE Proceedings, vol. 2235, pp. 329–338 (1994)

    Google Scholar 

  12. Deb, S., Yeddanapudi, M., Pattipati, K.R., Bar-Shalom, Y.: A Generalized S-D Assignment Algorithm for Multisensor-Multitarget State Estimation. IEEE Transactions on Aerospace and Electronic Systems 33(2), 523–538 (1997)

    Article  Google Scholar 

  13. DiPalma, L., Groves, G., Kiczuk, B., Kinney, B., Vahey, M.: Raytheon Processing Technology. Raytheon Technology Toda 2(1) (Spring 2003)

    Google Scholar 

  14. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of \({\cal NP}\)-Completeness. Freeman, New York (1979)

    Google Scholar 

  15. Jevtic, N., Klautau, A., Orlitsky, A.: Estimated rank pruning and Java-based speech recognition. In: Automatic Speech Recognition and Understanding IEEE Workshop, pp. 401–404 (2001)

    Google Scholar 

  16. Kurien, T.: Issues in the Design of Practical Multitarget Tracking Algorithms. In: Bar-Shalom, Y. (ed.) Multitarget-Multisensor Tracking: Applications and Advances, ch. 3, vol. I. Artech House, Norwood (1990)

    Google Scholar 

  17. Morefield, C.L.: Application of 0-1 Integer Programming to Multitarget Tracking Problems. IEEE Transactions on Automatic Control AC-22(3), 302–312 (1977)

    Article  MathSciNet  Google Scholar 

  18. Pasiliao, E.L.: Algorithms for Multidimensional Assignment Problems. Ph.D. thesis, University of Florida at Gainesville (2003)

    Google Scholar 

  19. Pasiliao, E.L., Pardalos, P.M., Pitsoulis, L.S.: Branch and Bound Algorithms for the Multidimensional Assignment Problem. Optimization Methods and Software 20(1), 127–143 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pattipati, K.R., Popp, R.L., Kirubarajan, T.: Survey of Assignment Techniques for Multitarget Tracking. In: Bar-Shalom, Y., Blair, W.D. (eds.) Multitarget-Multisensor Tracking: Applications and Advances, vol. III. Artech House, Norwood (2000)

    Google Scholar 

  21. Poore, A.B.: Multidimensional Assignment Formulation of Data Association Problems Arising from Multitarget Tracking and Multisensor Data Fusion. Computational Optimization and Applications 3, 27–57 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  22. Poore, A.B., Drummond, O.E.: Track Initiation and Maintenance Using Multidimensional Assignment Problems. In: Pardalos, P.M., Hearn, D., Hager, W. (eds.) Network Optimization. Lecture Notes in Economics and Mathematical Systems, pp. 407–422. Springer, Heidelberg (1996)

    Google Scholar 

  23. Poore, A.B., Robertson III, A.J.: A New Lagrangian Relaxation Based Algorithm for a Class of Multidimensional Assignment Problems. Computational Optimization and Applications 8, 129–150 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  24. Popp, R.L., Pattipati, K.R., Bar-Shalom, Y.: m-Best S-D Assignment Algorithm with Application to Multitarget Tracking. IEEE Transactions on Aerospace and Electronic Systems 37(1), 22–39 (2001)

    Article  Google Scholar 

  25. Robertson, A.J.: A Set of Greedy Randomized Adaptive Search Procedure (GRASP) Implementations for the Multidimensional Assignment Problem. Computational Optimization and Applications 19, 145–164 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Reid, D.B.: An Algorithm for Tracking Multiple Targets. IEEE Transactions on Automatic Control 24(6), 843–854 (1979)

    Article  Google Scholar 

  27. Sittler, R.W.: An Optimal Data Association Problem in Surveillance Theory. IEEE Transactions on Military Electronics 8, 125–139 (1964)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Papageorgiou, D.J., Salpukas, M.R. (2009). The Maximum Weight Independent Set Problem for Data Association in Multiple Hypothesis Tracking. In: Hirsch, M.J., Commander, C.W., Pardalos, P.M., Murphey, R. (eds) Optimization and Cooperative Control Strategies. Lecture Notes in Control and Information Sciences, vol 381. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88063-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88063-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88062-2

  • Online ISBN: 978-3-540-88063-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics