Advertisement

Extending the ANSI/SPARC Architecture Database with Explicit Data Semantics: An Ontology-Based Approach

  • Chimène Fankam
  • Stéphane Jean
  • Ladjel Bellatreche
  • Yamine Aït-Ameur
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5292)

Abstract

The database (DB) design process follows the traditional ANSI/SPARC architecture proposed by Bachman [1]. A conceptual model (CM) is translated into a logical model corresponding to a data specification implemented in a DB system. The physical model defines how data are stored and accessed. External models allow a DB designer to adapting data according to user’s requirements. Regarding the semantic exploitation of data models, this architecture has two major drawbacks [2]: (1) a strong dependency of models with designers and specific application requirements; (2) a gap between conceptual and logical models that increases with the discrepancy of the conceptual modelling languages.

The maintenance and/or evolution of the CM, that must be consensual when dealing with semantic integration of data sources (semantics and schema conflicts), are in the kernel of these problems. Recently, some works give more importance to CMs by materializing them in a DB [3]. In these works, the design of a CM is preceded by the design or by pre-existence of ontology. In this case, both ontology and data are represented in the DB. Such a DB is called an ontologybased database (OBDB). Hence our proposition is to extend the ANSI/SPARC architecture to support OBDBs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bachman, C.W.: Summary of current work - ansi/x3/sparc/study group - database systems, vol. 6, pp. 16–39 (1974)Google Scholar
  2. 2.
    Dehainsala, H., Pierra, G., Bellatreche, L., Aït-Ameur, Y.: Conception de bases de données á partir d’ontologies de domaine: Application aux bases de données du domaine technique. In: Actes des 1ère Journées Francophones sur les Ontologies (JFO 2007), pp. 215–230 (2007)Google Scholar
  3. 3.
    Sugumaran, V., Storey, V.C.: The role of domain ontologies in database design: An ontology management and conceptual modeling environment. ACM Transactions on Database Systems (TODS) 31(3), 1064–1094 (2006)CrossRefGoogle Scholar
  4. 4.
    Jean, S., Pierra, G., Aït-Ameur, Y.: Domain Ontologies: a Database-Oriented Analysis. In: Filipe, J., Cordeiro, J., Pedrosa, V. (eds.) WEBIST 2005 and WEBIST 2006. LNBIP, vol. 1, pp. 238–254. Springer, Heidelberg (2007)Google Scholar
  5. 5.
    Beneventano, D., Bergamaschi, S., Castano, S., Corni, A., Guidetti, R., Malvezzi, G., Melchiori, M., Vincini, M.: Information integration: The momis project demonstration. In: Proceedings of 26th International Conference on Very Large Data Bases (VLDB 2000), pp. 611–614. Morgan Kaufmann, San Francisco (2000)Google Scholar
  6. 6.
    Fankam, C.: OntoDB2: Support of Multiple Ontology Models within Ontology. In: Proceedings of the EDBT 2008 PhD Workshop. Co-located with the 11th International Conference on Extending Database Technology (EDBT 2008) (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Chimène Fankam
    • 1
  • Stéphane Jean
    • 1
  • Ladjel Bellatreche
    • 1
  • Yamine Aït-Ameur
    • 1
  1. 1.LISIENSMA and University of PoitiersFuturoscopeFrance

Personalised recommendations