Integration of Genomic, Proteomic and Biomedical Information on the Semantic Web

  • Bill Andreopoulos
  • Aijun An
  • Xiangji Huang
  • Dirk Labudde
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5232)


Researchers are faced with the challenge of integrating, on the basis of a common semantic web framework, the information on biological processes resulting from genomic and proteomic experimental studies. Researchers would like to integrate the biological processes’ roles in larger medical conditions, by taking account of the time dimension. This integration will support automated analysis and reasoning on the semantic web. We address these challenges by proposing the IGIPI framework, standing for “Integrating Gene Interactions and Protein Interactions”. IGIPI views different experimental studies as pieces of a puzzle that, if positioned properly, will contribute to a more complete representation of a biological process or medical condition over time. By representing the relative time points of events, this framework represents a biological process based on how it might be observed in an experiment over time. IGIPI involves integrating different ontologies and vocabularies, such as GO and UMLS/MeSH. We applied IGIPI to yeast and cancer examples. Availability:


Vascular Endothelial Growth Factor Biomedical Ontology Open Biomedical Ontology Biomedical Information Vascular Endothelial Growth Factor Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aranguren, M.E., Bechhofer, S., Lord, P., Sattler, U., Stevens, R.: Understanding and using the meaning of statements in a bio-ontology: recasting the Gene Ontology in OWL. BMC Bioinformatics 8, 57 (2007)CrossRefGoogle Scholar
  2. 2.
    Badea, L., Tilivea, D., Hotaran, A.: Semantic Web Reasoning for Ontology-Based Integration of Resources. In: Ohlbach, H.J., Schaffert, S. (eds.) PPSWR 2004. LNCS, vol. 3208, pp. 61–75. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Brazhnik, O., Jones, J.F.: Anatomy of data integration. J Biomed Inform 40(3), 252–269 (2007); Epub 2006 (September 24, 2006) CrossRefGoogle Scholar
  4. 4.
    Burek, P., et al.: A top-level ontology of functions and its application in the Open Biomedical Ontologies. Bioinformatics 22(14), 66–73 (2006)CrossRefGoogle Scholar
  5. 5.
    Cheung, K.H., et al.: YeastHub: a semantic web use case for integrating data in the life sciences domain. Bioinformatics 21 (suppl. 1), 85–96 (2005)CrossRefGoogle Scholar
  6. 6.
    Denecke, K.: Enhancing knowledge representations by ontological relations. Stud. Health Technol. Inform. 136, 791–796 (2008)Google Scholar
  7. 7.
    Dhanapalan, L., Chen, J.Y.: A case study of integrating protein interaction data using semantic web technology. Int. J. Bioinform. Res. Appl. 3(3), 286–302 (2007)CrossRefGoogle Scholar
  8. 8.
    Garcia-Sanchez, F., et al.: Combining Semantic Web technologies with Multi-Agent Systems for integrated access to biological resources. J. Biomed. Inform. (2008)Google Scholar
  9. 9.
    Koehler, J., Philippi, S., Lange, M.: SEMEDA: ontology based semantic integration of biological databases. Bioinformatics 19(18), 2420–2427 (2003)CrossRefGoogle Scholar
  10. 10.
    Lam, H., et al.: AlzPharm: integration of neurodegeneration data using RDF. BMC Bioinformatics 8 (suppl. 3), S4 (2007)CrossRefGoogle Scholar
  11. 11.
    Lam, H.Y., et al.: Using web ontology language to integrate heterogeneous databases in the neurosciences. In: AMIA Annu Symp Proc. 2006, pp. 464–468 (2006)Google Scholar
  12. 12.
    Marquet, G., Mosser, J., Burgun, A.: A method exploiting syntactic patterns and the UMLS semantics for aligning biomedical ontologies: the case of OBO disease ontologies. Int J Med Inform. 76 (suppl. 3), 353–361 (2007); Epub 2007 (May 22, 2007) CrossRefGoogle Scholar
  13. 13.
    Pasquier, C.: Biological data integration using Semantic Web technologies. Biochimie. 90(4), 584–594 (2008)CrossRefGoogle Scholar
  14. 14.
    Ruttenberg, A., et al.: Advancing translational research with the Semantic Web. BMC Bioinformatics 8 (suppl. 3), S2 (2007); ReviewCrossRefGoogle Scholar
  15. 15.
    Rubin, D.L., Shah, N.H., Noy, N.F.: Biomedical ontologies: a functional perspective. Brief Bioinform. 9(1), 75–90 (2008)CrossRefGoogle Scholar
  16. 16.
    Smith, A.K., Cheung, K.H., Yip, K.Y., Schultz, M., Gerstein, M.K.: LinkHub: a Semantic Web system that facilitates cross-database queries and information retrieval in proteomics. BMC Bioinformatics 8 (suppl. 3), S5 (2007) ReviewCrossRefGoogle Scholar
  17. 17.
    Smith, A., Cheung, K., Krauthammer, M., Schultz, M., Gerstein, M.: Leveraging the structure of the Semantic Web to enhance information retrieval for proteomics. Bioinformatics 23(22), 3073–3079 (2007); Epub 2007 (October 7, 2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Bill Andreopoulos
    • 1
    • 2
  • Aijun An
    • 2
  • Xiangji Huang
    • 2
  • Dirk Labudde
    • 1
  1. 1.Biotechnological CentreTechnische Universität Dresden Email: williama@biotec.tu-dresden.deGermany
  2. 2.Dept. of Computer Science and EngineeringYork UniversityTorontoCanada

Personalised recommendations