Retrieving Documents with Geographic References Using a Spatial Index Structure Based on Ontologies

  • Miguel R. Luaces
  • Ángeles S. Places
  • Francisco J. Rodríguez
  • Diego Seco
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5232)


Both Geographic Information Systems and Information Retrieval have been very active research fields in the last decades. Lately, a new research field called Geographic Information Retrieval has appeared from the intersection of these two fields. The main goal of this field is to define index structures and techniques to efficiently store and retrieve documents using both the text and the geographic references contained within the text.

We present in this paper a new index structure that combines an inverted index, a spatial index, and an ontology-based structure. This structure improves the query capabilities of other proposals. In addition, we describe the architecture of a system for geographic information retrieval that uses this new index structure. This architecture defines a workflow for the extraction of the geographic references in the document.


Index Structure Query Expansion Geographic Space Inverted Index Spatial Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison Wesley, Reading (1999)Google Scholar
  2. 2.
    Worboys, M.F.: GIS: A Computing Perspective. CRC, Boca Raton (2004)Google Scholar
  3. 3.
    Global Spatial Data Infrastructure Association: Online documentation (Retrieved, March 2008),
  4. 4.
    Lieberman, M.D., Samet, H., Sankaranarayanan, J., Sperling, J.: STEWARD: Architecture of a Spatio-Textual Search Engine. In: Proceedings of the 15th ACM Int. Symp. on Advances in GIS (ACMGIS 2007), pp. 186–193. ACM Press, New York (2007)Google Scholar
  5. 5.
    Chen, Y.Y., Suel, T., Markowetz, A.: Efficient query processing in geographic web search engines. In: SIGMOD Conference, pp. 277–288 (2006)Google Scholar
  6. 6.
    Martins, B., Silva, M.J., Andrade, L.: Indexing and ranking in Geo-IR systems. In: GIR 2005: Proceedings of the 2005 workshop on Geogr. Inform. retrieval, pp. 31–34. ACM Press, New York (2005)CrossRefGoogle Scholar
  7. 7.
    Gaede, V., Günther, O.: Multidimensional access methods. ACM Comput. Surv. 30(2), 170–231 (1998)CrossRefGoogle Scholar
  8. 8.
    Amitay, E., Har’El, N., Sivan, R., Soffer, A.: Web-a-where: geotagging web content. In: SIGIR 2004: Proceedings of the 27th ACM SIGIR, pp. 273–280. ACM, New York (2004)Google Scholar
  9. 9.
    Rauch, E., Bukatin, M., Baker, K.: A confidence-based framework for disambiguating geographic terms. In: Proceedings of the HLT-NAACL 2003 workshop on Analysis of Geogr. references, Morristown, USA, pp. 50–54. Association for Computational Linguistics (2003)Google Scholar
  10. 10.
    Jones, C.B., Abdelmoty, A.I., Fu, G.: Maintaining ontologies for geographical information retrieval on the web. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.) CoopIS 2003, DOA 2003, and ODBASE 2003. LNCS, vol. 2888, pp. 934–951. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Jones, C.B., Abdelmoty, A.I., Fu, G., Vaid, S.: The SPIRIT Spatial Search Engine: Architecture, Ontologies and Spatial Indexing. In: Egenhofer, M.J., Freksa, C., Miller, H.J. (eds.) GIScience 2004. LNCS, vol. 3234, pp. 125–139. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Vaid, S., Jones, C.B., Joho, H., Sanderson, M.: Spatio-Textual Indexing for Geographical Search on the Web. In: Bauzer Medeiros, C., Egenhofer, M.J., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 19–36. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Fu, G., Jones, C.B., Abdelmoty, A.I.: Ontology-Based Spatial Query Expansion in Information Retrieval. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3761, pp. 1466–1482. Springer, Heidelberg (2005)Google Scholar
  14. 14.
    Zhou, Y., Xie, X., Wang, C., Gong, Y., Ma, W.Y.: Hybrid index structures for location-based web search. In: Proceedings of CIKM 2005, pp. 155–162. ACM, New York (2005)Google Scholar
  15. 15.
    Hariharan, R., Hore, B., Li, C., Mehrotra, S.: Processing Spatial-Keyword (SK) Queries in Geographic Information Retrieval (GIR) Systems. In: Proceedings of the 19th Int. Conf. on Scientific and Statistical Database Management (SSDBM 2007). IEEE Computer Society, Los Alamitos (2007)Google Scholar
  16. 16.
    Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowledge Acquisition 5(2), 199–220 (1993)CrossRefGoogle Scholar
  17. 17.
    Gruber, T.R.: Towards Principles for the Design of Ontologies Used for Knowledge Sharing. In: Guarino, N., Poli, R. (eds.) Formal Ontology in Conceptual Analysis and Knowledge Representation, Deventer, The Netherlands. Kluwer Academic Publishers, Dordrecht (1993)Google Scholar
  18. 18.
    Dellis, E., Paliouras, G.: Management of Large Spatial Ontology Bases. In: Proceedings of the Workshop on Ontologies-based techniques for DataBases and Information Systems (ODBIS) of the 32nd Int. Conf. on Very Large Data Bases (VLDB 2006) (September 2006)Google Scholar
  19. 19.
    Apache: Lucene (Retrieved, March 2008),
  20. 20.
    World Wide Consortium: Owl web ontology language reference (Retrieved March, 2008),
  21. 21.
    Geonames: Gazetteer (Retrieved, March 2008),
  22. 22.
    National Imagery and Mapping Agency (NIMA): Vector Map Level 0 (Retrieved, March 2008),
  23. 23.
    Alias-i: LingPipe, Natural Language Tool (Retrieved, March 2008),
  24. 24.
    Open GIS Consortium, Inc.: OpenGIS Web Map Service Implementation Specification. OpenGIS Project Document 01-068r3, Open GIS Consortium, Inc. (2002)Google Scholar
  25. 25.
    Google: Google Maps API (Retrieved, March 2008),
  26. 26.
    National Institute of Standards and Technology (NIST): TREC Special Database 22, TREC Document Database: Disk 4 (Retrieved, March 2008),
  27. 27.
    Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: an efficient and robust access method for points and rectangles. SIGMOD Rec. 19(2), 322–331 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Miguel R. Luaces
    • 1
  • Ángeles S. Places
    • 1
  • Francisco J. Rodríguez
    • 1
  • Diego Seco
    • 1
  1. 1.Databases LaboratoryUniversity of A CoruñaCoruñaSpain

Personalised recommendations