Life and Motion Configurations: A Basis for Spatio-temporal Generalized Reasoning Model

  • Pierre Hallot
  • Roland Billen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5232)


Although intensive work has been devoted to spatio-temporal qualitative reasoning models, some issues such as management of complex objects life and motion remain. In this paper, we propose a model dealing with existence and presence of object concepts. First, we introduce spatio-temporal states, which express existing spatio-temporal relationships between two objects at a given time. Spatio-temporal states decision tree is presented. Based on this new representation, we construct a finite set of life and motion configurations which can be seen as a way to categorise spatio-temporal histories. Then, we present the model itself which is based on 25 generalized life and motion configurations. Indeed, these generalized configurations are assimilated to line-line topological relationships obtained by projecting life and motion configurations in a primitive space. Finally, generalized life and motions configurations conceptual neighbourhood diagram and their interpretation in natural language are given.


Spatio-temporal reasoning spatio-temporal states life and motion configuration primitive space spatio-temporal generalization natural language interpretation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goodchild, M., Egenhofer, M., Kemp, K.K., Mark, D.M.: Introduction to the Varenius project. International Journal of Geographic Information Systems 13, 731–745 (1999)CrossRefGoogle Scholar
  2. 2.
    Hazarika, S., Cohn, A.G.: Qualitative spatio-temporal continuity. In: Montello, D.R. (ed.) Proceedings of Conference On Spatial Information Theory, pp. 92–107 (2001)Google Scholar
  3. 3.
    Freksa, C.: Qualitative Spatial Reasoning. In: Mark, D.M., Frank, A.U. (eds.) Cognitive and Linguistic Aspects of Geographic Space, pp. 361–372. Kluwer Academic Publishers, Dordrecht (1991)CrossRefGoogle Scholar
  4. 4.
    Randell, D.A., Cui, Z., Cohn, A.G.: A Spatial Logic Based on Regions and Connection. In: Nebel, B., Rich, C., Swartout, W. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Third International Conference, pp. 165–176. Morgan Kaufmann, San Mateo (1992)Google Scholar
  5. 5.
    Egenhofer, M., Herring, J.: Categorizing Binary Topological Relations Between Regions, Lines and Points in Geographic Databases. Technical Report. Department of Surveying Engineering, University of Maine, p. 28 (1990)Google Scholar
  6. 6.
    Kontchakov, A., Kurucz, A., Wolter, F., Zakharyaschev, M.: Spatial logic + temporal logic =? In: Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.) The Logic of Space, p. 72. Kluwer, Dordrecht (2007)Google Scholar
  7. 7.
    Wolter, F., Zakharyaschev, M.: Spatio-temporal representation and reasoning based on RCC-8. In: Seventh Conference on Principles of Knowledge Representation and Reasoning, KR 2000, pp. 3–14. Morgan Kafmann, Breckenridge (2000)Google Scholar
  8. 8.
    Gerevini, A., Nebel, B.: Qualitative Spatio-Temporal Reasoning with RCC-8 and Allen’s Interval Calculus: Computational Complexity. In: ECAI 2002, pp. 312–316. IOS Press, Amsterdam (2002)Google Scholar
  9. 9.
    Cohn, A.G., Bennett, B., Gooday, J.M., Gotts, N.M.: Qualitative Spatial Representation and Reasoning with the Region Connection Calculus. Geoinformatica 1, 275–316 (1997)CrossRefGoogle Scholar
  10. 10.
    Allen, J.F.: Towards a general theory of action and time. Artificial Intelligence 23, 123–154 (1984)CrossRefzbMATHGoogle Scholar
  11. 11.
    Mamma, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems. Springer, Berlin (1992)Google Scholar
  12. 12.
    Van de Weghe, N.: Representing and Reasoning about Moving Objects: A Qualitative Approach (Volume I). Department of Geography - Faculty of Sciences. Ghent University, Ghent, p. 168 (2004)Google Scholar
  13. 13.
    Claramunt, C., Jiang, B.: A representation of relationships in temporal spaces. In: Atkinson, P., Martin, D. (eds.) Innovations in GIS VII: GeoComputation, vol. 7, pp. 41–53. Taylor & Francis, London (2000)Google Scholar
  14. 14.
    Muller, P.: Topological Spatio-Temporal Reasoning and Representation. Computational Intelligence 18, 420–450 (2002)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Van de Weghe, N., Cohn, A.G., De Tre, G., De Maeyer, P.: A Qualitative Trajectory Calculus as a Basis for Representing Moving Objects in Geographical Information Systems. Control and Cybernetics 35 (2006)Google Scholar
  16. 16.
    Noyon, V., Devogele, T., Claramunt, C.: A formal model for representing point trajectories in two-dimensional spaces. In: Akoka, J., Liddle, S.W., Song, I.-Y., Bertolotto, M., Comyn-Wattiau, I., van den Heuvel, W.-J., Kolp, M., Trujillo, J., Kop, C., Mayr, H.C. (eds.) ER Workshops 2005. LNCS, vol. 3770, pp. 208–217. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Galton, A.: A qualitative approach to continuity. In: Amsili, P., Borillo, M., Vieu, L. (eds.) Proceedings of the 5th International Workshop on Time, Space and Movement: Meaning and Knowledge in the Sensible World (TSM 1995), Toulouse, France, pp. 17–30 (1995)Google Scholar
  18. 18.
    Hayes, P.: Naive physics I: ontology for liquids. Readings in qualitative reasoning about physical systems, pp. 484–502. Morgan Kaufmann Publishers Inc., San Francisco (1990)CrossRefGoogle Scholar
  19. 19.
    Hallot, P., Billen, R.: Spatio-Temporal Configurations of Dynamics Points in a 1D Space. In: Gottfried, B. (ed.) Behaviour Monitoring and Interpretation BMI 2007, Centre for Computing Technologies (TZI), University of Bremen, Germany, Osnabrück, Germany, pp. 77–90 (2007)Google Scholar
  20. 20.
    Muller, P.: Éléments d’une théorie du mouvement pour la formalisation du raisonnement spatio-temporel de sens commun. Institut de recherche en informatique de Toulouse, p. 219. Université Paul Sabatier, Toulouse (1998)Google Scholar
  21. 21.
    Kurata, Y., Egenhofer, M.: The 9+-intersection for Topological Relations between a Directed Line Segment and a Region. In: Björn, G. (ed.) Workshop on Behaviour Monitoring and Interpretation (BMI 2007), University of Brement, TZI Technical Report, Osnabrück, Germany, vol. 42, pp. 62–76 (2007)Google Scholar
  22. 22.
    Bandini, S., Mosca, A., Palmonari, M.: Commonsense Spatial Reasoning for Context–Aware Pervasive Systems. Location- and Context-Awareness, 180–188 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Pierre Hallot
    • 1
  • Roland Billen
    • 1
  1. 1.Geomatics UnitUniversity of LiegeLiegeBelgium

Personalised recommendations