Towards a Dynamic Inconsistency-Tolerant Schema Maintenance

  • Hendrik Decker
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5232)


When a relational database schema changes, the questions arises if any integrity constraint is violated by the change. For dynamic schema maintenance, traditional methods to answer this question have several debilities. First, they require that all integrity constraints be satisfied before admitting any update, although extant integrity violations are frequent in practice. Second, they are inefficient for dynamic changes of integrity constraints. Third, they are unflexible wrt safety-critical constraints. Fourth, they usually do not care at all whether an updated schema remains satisfiable. We propose improvements of each of these weaknesses.


Integrity Theory Integrity Constraint Relevant Case Hard Constraint Database Schema 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rodríguez, A.: Inconsistency Issues in Spatial Databases. In: Inconsistency Tolerance. LNCS, vol. 3300, pp. 237–269. Springer, Heidelberg (2005)Google Scholar
  2. 2.
    Bry, F., Decker, H., Manthey, R.: A uniform approach to constraint satisfaction and constraint satisfiability in deductive databases. In: Schmidt, J.W., Missikoff, M., Ceri, S. (eds.) EDBT 1988. LNCS, vol. 303, pp. 488–505. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  3. 3.
    Cabot, J., Conesa, J.: Automatic Integrity Constraint Evolution due to Model Subtract Operations. In: Wang, S., Tanaka, K., Zhou, S., Ling, T.-W., Guan, J., Yang, D.-q., Grandi, F., Mangina, E.E., Song, I.-Y., Mayr, H.C. (eds.) ER Workshops 2004. LNCS, vol. 3289, pp. 350–362. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Christiansen, H., Martinenghi, D.: On simplification of database integrity constraints. Fundam. Inform. 71(4), 371–417 (2006)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Decker, H., Martinenghi, D.: A relaxed approach to integrity and inconsistency in databases. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 287–301. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Decker, H., Martinenghi, D.: Classifying Integrity Checking Methods with regard to Inconsistency Tolerance. In: 10th PPDP. ACM Press, New York (2008)Google Scholar
  7. 7.
    Gupta, A., Sagiv, Y., Ullman, J., Widom, J.: Constraint checking with partial information. In: 13th PODS, pp. 45–55. ACM Press, New York (1994)Google Scholar
  8. 8.
    Lee, S.Y., Ling, T.W.: Further improvements on integrity constraint checking for stratifiable deductive databases. In: 22nd VLDB, pp. 495–505. Morgan Kaufmann, San Francisco (1996)Google Scholar
  9. 9.
    Lloyd, J., Sonenberg, L., Topor, R.: Integrity constraint checking in stratified databases. J. Log. Progr. 4(4), 331–343 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Martinenghi, D., Christiansen, H., Decker, H.: Integrity checking and maintenance in relational and deductive databases and beyond. In: Ma, Z. (ed.) Intelligent Databases: Technologies and Applications, pp. 238–285. Idea Group (2006)Google Scholar
  11. 11.
    Nicolas, J.M.: Logic for improving integrity checking in relational data bases. Acta Informatica 18, 227–253 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Rahm, E., Bernstein, P.: An online bibliography on schema evolution. SIGMOD Record 35(4), 30–31 (2006)CrossRefGoogle Scholar
  13. 13.
    Ramakrishnan, R., Gehrke, J.: Database Management Systems. McGraw-Hill, New York (2003)Google Scholar
  14. 14.
    Sadri, F., Kowalski, R.: A theorem-proving approach to database integrity. In: Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, pp. 313–362. Morgan Kaufmann, San Francisco (1988)CrossRefGoogle Scholar
  15. 15.
    Türker, C.: Schema Evolution in SQL-99 and Commercial (Object-)Relational DBMS. In: Balsters, H., De Brock, B., Conrad, S. (eds.) FoMLaDO 2000. LNCS, vol. 2065, pp. 1–32. Springer, Heidelberg (2001)Google Scholar
  16. 16.
    Wijsen, J.: Inconsistency and Incompleteness in Databases. In: Grust, T., Höpfner, H., Illarramendi, A., Jablonski, S., Mesiti, M., Müller, S., Patranjan, P.-L., Sattler, K.-U., Spiliopoulou, M., Wijsen, J. (eds.) EDBT 2006. LNCS, vol. 4254, pp. 278–374. Springer, Heidelberg (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Hendrik Decker
    • 1
  1. 1.Instituto Tecnológico de InformáticaValenciaSpain

Personalised recommendations