Skip to main content

Numberings Optimal for Learning

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5254))

Abstract

This paper extends previous studies on learnability in non-acceptable numberings by considering the question: for which criteria which numberings are optimal, that is, for which numberings it holds that one can learn every learnable class using the given numbering as hypothesis space. Furthermore an effective version of optimality is studied as well. It is shown that the effectively optimal numberings for finite learning are just the acceptable numberings. In contrast to this, there are non-acceptable numberings [3] which are optimal for finite learning and effectively optimal for explanatory, vacillatory and behaviourally correct learning. The numberings effectively optimal for explanatory learning are the K-acceptable numberings. A similar characterization is obtained for the numberings which are effectively optimal for vacillatory learning. Furthermore, it is studied which numberings are optimal for one and not for another criterion: among the criteria of finite, explanatory, vacillatory and behaviourally correct learning all separations can be obtained; however every numbering which is optimal for explanatory learning is also optimal for consistent learning.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angluin, D.: Inductive inference of formal languages from positive data. Information and Control 45, 117–135 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bārzdiņš, J.: Two theorems on the limiting synthesis of functions. In: Theory of Algorithms and Programs, LSU, Riga, Latvia, vol. 1, pp. 82–88 (1974)

    Google Scholar 

  3. Blum, L., Blum, M.: Toward a mathematical theory of inductive inference. Information and Control 28, 125–155 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  4. Case, J.: The power of vacillation in language learning. SIAM Journal on Computing 28, 1941–1969 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. de Jongh, D., Kanazawa, M.: Angluin’s theorem for indexed families of r.e. sets and applications. In: Proceedings of the Ninth Annual Conference on Computational Learning Theory, pp. 193–204. ACM Press, New York (1996)

    Chapter  Google Scholar 

  6. Freivalds, R., Kinber, E., Wiehagen, R.: Inductive inference and computable one-one numberings. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 28, 463–479 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  7. Friedberg, R.: Three theorems on recursive enumeration. The Journal of Symbolic Logic 23(3), 309–316 (1958)

    Article  MathSciNet  Google Scholar 

  8. Fulk, M.: Prudence and other conditions on formal language learning. Information and Computation 85, 1–11 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gold, E.M.: Language identification in the limit. Information and Control 10, 447–474 (1967)

    Article  MATH  Google Scholar 

  10. Jain, S., Sharma, A.: Learning with the knowledge of an upper bound on program size. Information and Computation 102, 118–166 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jain, S., Stephan, F.: Learning in Friedberg numberings. In: Hutter, M., Servedio, R.A., Takimoto, E. (eds.) ALT 2007. LNCS (LNAI), vol. 4754, pp. 79–93. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Lange, S.: Algorithmic Learning of Recursive Languages. Habilitationsschrift, Universität Leipzig, Mensch und Buch Verlag, Berlin (2000)

    Google Scholar 

  13. Lange, S., Zeugmann, T.: Language learning in dependence on the space of hypotheses. In: Proceedings of the Sixth Annual Conference on Computational Learning Theory, Santa Cruz, California, United States, pp. 127–136 (1993)

    Google Scholar 

  14. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications, 2nd edn. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  15. Osherson, D., Stob, M., Weinstein, S.: Systems That Learn, An Introduction to Learning Theory for Cognitive and Computer Scientists. MIT Press, Cambridge (1986)

    Google Scholar 

  16. Osherson, D.N., Weinstein, S.: Criteria of language learning. Information and Control 52, 123–138 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  17. Soare, R.I.: Recursively enumerable sets and degrees. Perspectives in Mathematical Logic. Springer, Berlin (1987)

    Google Scholar 

  18. Wiehagen, R., Liepe, W.: Charakteristische Eigenschaften von erkennbaren Klassen rekursiver Funktionen. Journal of Information Processing and Cybernetics (EIK) 12, 421–438 (1976)

    MATH  MathSciNet  Google Scholar 

  19. Wiehagen, R., Zeugmann, T.: Learning and consistency. In: Lange, S., Jantke, K.P. (eds.) GOSLER 1994. LNCS, vol. 961, pp. 1–24. Springer, Heidelberg (1995)

    Google Scholar 

  20. Zeugmann, T.: Algorithmisches Lernen von Funktionen und Sprachen. Habilitationsschrift, Technische Hochschule Darmstadt (1993)

    Google Scholar 

  21. Zilles, S.: Increasing the power of uniform inductive learners. Journal of Computer and System Sciences 70, 510–538 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jain, S., Stephan, F. (2008). Numberings Optimal for Learning. In: Freund, Y., Györfi, L., Turán, G., Zeugmann, T. (eds) Algorithmic Learning Theory. ALT 2008. Lecture Notes in Computer Science(), vol 5254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87987-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87987-9_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87986-2

  • Online ISBN: 978-3-540-87987-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics