Skip to main content

Modern Neuroimaging of Pediatric Brain Tumors

  • Chapter
Pediatric CNS Tumors

Part of the book series: Pediatric Oncology ((PEDIATRICO))

Neuroimaging has been an important tool in the diagnosis and surveillance of brain tumors for more than 30 years. Although magnetic resonance (MR) imaging remains the most important imaging tool for assessing CNS neoplasms, new techniques have allowed physiologic features of brain tumors and the surrounding functional brain tissue to be performed noninvasively. In this chapter, these new techniques and their applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberstone CD, Skirboll SL, Benzel EC, Sanders JA, Hart BL, Baldwin NG, Tessman CL, Davis JT, Lee RR (2000) Magnetic source imaging and brain surgery: presurgical and intraoperative planning in 26 patients. Journal of Neuro-surgery 92:79–90

    CAS  Google Scholar 

  • Aronen HJ, Gazit IE, Louis DN, Buchbinder BR, Pardo FS, Weis-skoff RM, Harsh GR, Cosgrove GR, Halpern EF, Hochberg FH et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51

    PubMed  CAS  Google Scholar 

  • Ball WS Jr, Holland SK (2001) Perfusion imaging in the pediat-ric patient. Magnetic Resonance Imaging Clinics of North America 9:207–230; ix

    PubMed  Google Scholar 

  • Barker PB, Glickson JD, Bryan RN (1993) In vivo magnetic resonance spectroscopy of human brain tumors. Topics in Magnetic Resonance Imaging 5:32–45

    Article  PubMed  CAS  Google Scholar 

  • Barker FG 2nd, Chang SM, Valk PE, Pounds TR, Prados MD (1997) 18-Fluorodeoxyglucose uptake and survival of patients with suspected recurrent malignant glioma. Cancer 79:115–126

    Article  PubMed  CAS  Google Scholar 

  • Beisteiner R, Gomiscek G, Erdler M, Teichtmeister C, Moser E, Deecke L (1995) Comparing localization of conventional functional magnetic resonance imaging and magnetoencepha-lography. European Journal of Neuroscience 7:1121–1124

    Article  PubMed  CAS  Google Scholar 

  • Birken DL, Oldendorf WH (1989) N-acetyl-L -aspartic acid: a literature review of a compound prominent in 1H-NMR spectroscopic studies of brain. Neuroscience and Biobe-havioral Reviews 13:23–31

    Article  CAS  Google Scholar 

  • Black KL, Emerick T, Hoh C, Hawkins RA, Mazziotta J, Becker DP (1994) Thallium-201 SPECT and positron emission tomography equal predictors of glioma grade and recurrence. Neurological Research 16:93–96

    PubMed  CAS  Google Scholar 

  • Boxerman JL, Bandettini PA, Kwong KK, Baker JR, Davis TL, Rosen BR, Weisskoff RM (1995) The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo. Magnetic Resonance in Medicine 34:4–10

    Article  PubMed  CAS  Google Scholar 

  • Bradbury MS, Hambardzumyan D, Zanzonico PB, Schwartz J, Cai S, Burnazi EM, Longo V, Larson SM, Holland EC (2008) Dynamic small-animal PET imaging of tumor proliferation with 3¢-deoxy-3¢-18F-fluorothymidine in a genetically engineered mouse model of high-grade gliomas. Journal of Nuclear Medicine 49:422–429

    Article  PubMed  Google Scholar 

  • Breier JI, Simos PG, Zouridakis G, Wheless JW, Willmore LJ, Constantinou JE, Maggio WW, Papanicolaou AC (1999) Language dominance determined by magnetic source imaging: a comparison with the Wada procedure. Neurology 53:938–945

    Article  PubMed  CAS  Google Scholar 

  • Brunelle F (2000) Noninvasive diagnosis of brain tumours in children. Childs Nervous System 16:731–734

    Article  CAS  Google Scholar 

  • Butzen J, Prost R, Chetty V, Donahue K, Neppl R, Bowen W, Li SJ, Haughton V, Mark L, Kim T, Mueller W, Meyer G, Krou-wer H, Rand S (2000) Discrimination between neoplas-tic and nonneoplastic brain lesions by use of proton MR spectroscopy: the limits of accuracy with a logistic regression model. AJNR. American Journal of Neuroradiology 21:1213–1219

    PubMed  CAS  Google Scholar 

  • Cappabianca P, Spaziante R, Caputi F, Pettinato G, Del Basso De Caro M, Carrabs G, de Divitiis E (1991) Accuracy of the analysis of multiple small fragments of glial tumors obtained by stereotactic biopsy. Acta Cytologica 35:505–511

    PubMed  CAS  Google Scholar 

  • Cedzich C, Taniguchi M, Schafer S, Schramm J (1996) Soma-tosensory evoked potential phase reversal and direct motor cortex stimulation during surgery in and around the central region. Neurosurgery 38:962–970

    Article  PubMed  CAS  Google Scholar 

  • Cha S, Knopp EA, Johnson G, Litt A, Glass J, Gruber ML, Lu S, Zagzag D (2000a) Dynamic contrast-enhanced T2-weighted MR imaging of recurrent malignant gliomas treated with thalidomide and carboplatin. AJNR. American Journal of Neuroradiology 21:881–890

    CAS  Google Scholar 

  • Cha S, Lu S, Johnson G, Knopp EA (2000b) Dynamic susceptibility contrast MR imaging: correlation of signal intensity changes with cerebral blood volume measurements. Journal of Magnetic Resonance Imaging 11:114–119

    Article  CAS  Google Scholar 

  • Cha S, Knopp EA, Johnson G, Wetzel SG, Litt AW, Zagzag D (2002) Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology 223:11–29

    Article  PubMed  Google Scholar 

  • Chan YL, Leung SF, King AD, Choi PH, Metreweli C (1999) Late radiation injury to the temporal lobes: morphologic evaluation at MR imaging. Radiology 213:800–807

    PubMed  CAS  Google Scholar 

  • Chandrasoma PT, Smith MM, Apuzzo ML (1989) Stereotactic biopsy in the diagnosis of brain masses: comparison of results of biopsy and resected surgical specimen. Neuro-surgery 24:160–165

    CAS  Google Scholar 

  • Chang KH, Song IC, Kim SH, Han MH, Kim HD, Seong SO, Jung HW, Han MC (1998) In vivo single-voxel proton MR spec-troscopy in intracranial cystic masses. AJNR. American Journal of Neuroradiology 19:401–405

    PubMed  CAS  Google Scholar 

  • Chawla A, Emmanuel JV, Seow WT, Lou J, Teo HE, Lim CC (2007) Paediatric PNET: pre-surgical MRI features. Clinical Radiology 62:43–52

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Silverman DH (2008) Advances in evaluation of primary brain tumors. Seminars in Nuclear Medicine 38:240–250

    Article  PubMed  Google Scholar 

  • Cheng LL, Chang IW, Louis DN, Gonzalez RG (1998) Correlation of high-resolution magic angle spinning proton magnetic resonance spectroscopy with histopathology of intact human brain tumor specimens. Cancer Research 58:1825–1832

    PubMed  CAS  Google Scholar 

  • Choi JY, Kim SE, Shin HJ, Kim BT, Kim JH (2000) Brain tumor imaging with 99mTc-tetrofosmin: comparison with 201Tl, 99mTc-MIBI, and 18F-fluorodeoxyglucose. Journal of Neu-rooncology 46:63–70

    Article  CAS  Google Scholar 

  • Dadparvar S, Hussain R, Koffler SP, Gillan MM, Bartolic EI, Miyamoto C (2000) The role of Tc-99m HMPAO functional brain imaging in detection of cerebral radionecrosis. Cancer Journal 6:381–387

    CAS  Google Scholar 

  • De Witte O, Lefranc F, Levivier M, Salmon I, Brotchi J, Goldman S (2000) FDG-PET as a prognostic factor in high-grade astrocytoma. Journal of Neurooncology 49:157–163

    Article  Google Scholar 

  • Dezortova M, Hajek M, Cap F, Babis M, Tichy M, Vymazal J (1999) Comparison of MR spectroscopy and MR imaging with contrast agent in children with cerebral astrocytomas. Childs Nervous System 15:408–412

    Article  CAS  Google Scholar 

  • Di Chiro G, Oldfield E, Wright DC, De Michele D, Katz DA, Pat-ronas NJ, Doppman JL, Larson SM, Ito M, Kufta CV (1988) Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropatho-logic studies. AJR. American Journal of Roentgenology 150:189–197

    PubMed  Google Scholar 

  • Dillon W P, Roberts T (1999) The limitations of functional MR imaging: a caveat. AJNR. American Journal of Neuroradiol-ogy 20:536

    CAS  Google Scholar 

  • Disbrow E, Roberts T P, Slutsky D, Krubitzer L (1999) The use of fMRI for determining the topographic organization of cortical fields in human and nonhuman primates. Brain Research 829:167–173

    Article  PubMed  CAS  Google Scholar 

  • Dowling C, Bollen AW, Noworolski SM, McDermott MW, Barbaro NM, Day MR, Henry RG, Chang SM, Dillon WP, Nelson SJ, Vigneron DB (2001) Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. AJNR. American Journal of Neuroradiology 22:604–612

    PubMed  CAS  Google Scholar 

  • Field AS, Ye n YF, Burdette JH, Elster AD (2000) False cerebral activation on BOLD functional MR images: study of low-amplitude motion weakly correlated to stimulus. AJNR. American Journal of Neuroradiology 21:1388–1396

    PubMed  CAS  Google Scholar 

  • Filippi M, Cercignani M, Inglese M, Horsfield MA, Comi G (2001) Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology 56:304–311

    Article  PubMed  CAS  Google Scholar 

  • Ganslandt O, Fahlbusch R, Nimsky C, Kober H, Moller M, Steinmeier R, Romstock J, Vieth J (1999) Functional neuro-navigation with magnetoencephalography: outcome in 50 patients with lesions around the motor cortex. Neurosurgi-cal Focus 6:e3

    CAS  Google Scholar 

  • Gauvain KM, McKinstry RC, Mukherjee P, Perry A, Neil JJ, Kaufman BA, Hayashi RJ (2001) Evaluating pediatric brain tumor cellularity with diffusion-tensor imaging. AJR. American Journal of Roentgenology 177:449–454

    PubMed  CAS  Google Scholar 

  • Gerlowski LE, Jain RK (1986) Microvascular permeability of normal and neoplastic tissues. Microvascular Research 31:288–305

    Article  PubMed  CAS  Google Scholar 

  • Giannini C, Scheithauer BW (1997) Classification and grading of low-grade astrocytic tumors in children. Brain Pathology 7:785–798

    Article  PubMed  CAS  Google Scholar 

  • Girard N, Wang ZJ, Erbetta A, Sutton LN, Phillips PC, Rorke LB, Zimmerman RA (1998) Prognostic value of proton MR spectroscopy of cerebral hemisphere tumors in children. Neuroradiology 40:121–125

    Article  PubMed  CAS  Google Scholar 

  • Go KG, Keuter EJ, Kamman RL, Pruim J, Metzemaekers JD, Staal MJ, Paans AM, Vaalburg W (1994) Contribution of magnetic resonance spectroscopic imaging and l-[1-11C] tyrosine positron emission tomography to localization of cerebral gliomas for biopsy. Neurosurgery 34:994–1002; discussion 1002

    Article  PubMed  CAS  Google Scholar 

  • Graham SJ, Henkelman RM (1997) Understanding pulsed magnetization transfer. Journal of Magnetic Resonance Imaging 7:903–912

    Article  PubMed  CAS  Google Scholar 

  • Grand S, Passaro G, Ziegler A, Esteve F, Boujet C, Hoffmann D, Rubin C, Segebarth C, Decorps M, Le Bas JF, Remy C (1999) Necrotic tumor versus brain abscess: importance of amino acids detected at 1H MR spectroscopy–initial results. Radiology 213:785–793

    PubMed  CAS  Google Scholar 

  • Greenwood J (1991) Mechanisms of blood-brain barrier breakdown. Neuroradiology 33:95–100

    Article  PubMed  CAS  Google Scholar 

  • Grossman RI, Gomori JM, Ramer KN, Lexa FJ, Schnall MD (1994) Magnetization transfer: theory and clinical applications in neuroradiology. Radiographics 14:279–290

    PubMed  CAS  Google Scholar 

  • Gupta RK, Vatsal DK, Husain N, Chawla S, Prasad KN, Roy R, Kumar R, Jha D, Husain M (2001) Differentiation of tuberculous from pyogenic brain abscesses with in vivo proton MR spectroscopy and magnetization transfer MR imaging. AJNR. American Journal of Neuroradiology 22:1503–1509

    PubMed  CAS  Google Scholar 

  • Haba D, Pasco Papon A, Tanguy JY, Burtin P, Aube C, Caron-Poitreau C (2001) Use of half-dose gadolinium-enhanced MRI and magnetization transfer saturation in brain tumors. European Radiology 11:117–122

    Article  PubMed  CAS  Google Scholar 

  • Han D, Chang KH, Han MH, Cho JY, Han SW, Kim HD, Seong SO (1998) Half-dose gadolinium-enhanced MR imaging with magnetization transfer technique in brain tumors: comparison with conventional contrast-enhanced MR imaging. AJR. American Journal of Roentgenology 170:189–193

    PubMed  CAS  Google Scholar 

  • Hatakeyama T, Kawai N, Nishiyama Y, Yamamoto Y, Sasakawa Y, Ichikawa T, Tamiya T (2008) (11)C-methionine (MET) and (18)F-fluorothymidine (FLT) PET in patients with newly diagnosed glioma. European Journal of Nuclear Medicine and Molecular Imaging 35:2009–2017

    Article  PubMed  CAS  Google Scholar 

  • Holodny AI, Schulder M, Liu WC, Maldjian JA, Kalnin AJ (1999) Decreased BOLD functional MR activation of the motor and sensory cortices adjacent to a glioblastoma multi-forme: implications for image-guided neurosurgery. AJNR. American Journal of Neuroradiology 20:609–612

    PubMed  CAS  Google Scholar 

  • Horska A, Ulug AM, Melhem ER, Filippi CG, Burger PC, Edgar MA, Souweidane MM, Carson BS, Barker PB (2001) Proton magnetic resonance spectroscopy of choroid plexus tumors in children. Journal of Magnetic Resonance Imaging 14:78–82

    Article  PubMed  CAS  Google Scholar 

  • Hunter J V, Wang ZJ (2001) MR spectroscopy in pediatric neu-roradiology. Magnetic Resonance Imaging Clinics of North America 9:165–189; ix

    PubMed  CAS  Google Scholar 

  • Inglis BA, Neubauer D, Yang L, Plant D, Mareci TH, Muir D (1999) Diffusion tensor MR imaging and comparative histology of glioma engrafted in the rat spinal cord. AJNR. American Journal of Neuroradiology 20:713–716

    PubMed  CAS  Google Scholar 

  • Joyce P, Bentson J, Takahashi M, Winter J, Wilson G, Byrd S (1978) The accuracy of predicting histologic grades of supratentorial astrocytomas on the basis of computerized tomography and cerebral angiography. Neuroradiology 16:346–348

    Article  PubMed  CAS  Google Scholar 

  • Kamada K, Houkin K, Abe H, Sawamura Y, Kashiwaba T (1997) Differentiation of cerebral radiation necrosis from tumor recurrence by proton magnetic resonance spectroscopy. Neurologia Medico-Chirurgica 37:250–256

    Article  PubMed  CAS  Google Scholar 

  • Kaplan WD, Takvorian T, Morris JH, Rumbaugh CL, Connolly BT, Atkins HL (1987) Thallium-201 brain tumor imaging: a comparative study with pathologic correlation. Journal of Nuclear Medicine 28:47–52

    PubMed  CAS  Google Scholar 

  • Kaplan AM, Bandy DJ, Manwaring KH, Chen K, Lawson MA, Moss SD, Duncan JD, Wodrich DL, Schnur JA, Reiman EM (1999) Functional brain mapping using positron emission tomography scanning in preoperative neurosurgical planning for pediatric brain tumors. Journal of Neurosurgery 91:797–803

    Article  PubMed  CAS  Google Scholar 

  • Keene DL, Hsu E, Ventureyra E (1999) Brain tumors in childhood and adolescence. Pediatric Neurology 20:198–203

    Article  PubMed  CAS  Google Scholar 

  • Keles GE, Chang EF, Lamborn KR, Tihan T, Chang CJ, Chang SM, Berger MS (2006) Volumetric extent of resection and residual contrast enhancement on initial surgery as predictors of outcome in adult patients with hemispheric ana-plastic astrocytoma. Journal of Neurosurgery 105:34–40

    Article  PubMed  Google Scholar 

  • Kim EE, Chung SK, Haynie T P, Kim CG, Cho BJ, Podoloff DA, Tilbury RS, Yang DJ, Yung WK, Moser RP Jr et al (1992) Differentiation of residual or recurrent tumors from post-treatment changes with F-18 FDG PET. Radiographics 12:269–279

    PubMed  CAS  Google Scholar 

  • Kim SH, Chang KH, Song IC, Han MH, Kim HC, Kang HS, Han MC (1997) Brain abscess and brain tumor: discrimination with in vivo H-1 MR spectroscopy. Radiology 204:239–245

    PubMed  CAS  Google Scholar 

  • Kimura T, Sako K, Gotoh T, Tanaka K, Tanaka T (2001) In vivo single-voxel proton MR spectroscopy in brain lesions with ring-like enhancement. NMR in Biomedicine 14:339–349

    Article  PubMed  CAS  Google Scholar 

  • Kincaid PK, El-Saden SM, Park SH, Goy BW (1998) Cerebral gangliogliomas: preoperative grading using FDG-PET and 201Tl-SPECT. AJNR. American Journal of Neuroradiology 19:801–806

    PubMed  CAS  Google Scholar 

  • Kinoshita Y, Yokota A (1997) Absolute concentrations of metabolites in human brain tumors using in vitro proton magnetic resonance spectroscopy. NMR in Biomedicine 10:2–12

    Article  PubMed  CAS  Google Scholar 

  • Knauth M, Forsting M, Hartmann M, Heiland S, Balzer T, Sartor K (1996) MR enhancement of brain lesions: increased contrast dose compared with magnetization transfer. AJNR. American Journal of Neuroradiology 17:1853–1859

    PubMed  CAS  Google Scholar 

  • Knopp EA, Cha S, Johnson G, Mazumdar A, Golfinos JG, Zagzag D, Miller DC, Kelly PJ, Kricheff II (1999) Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 211:791–798

    PubMed  CAS  Google Scholar 

  • Krishnamoorthy T, Radhakrishnan V V, Thomas B, Jeyadevan ER, Menon G, Nair S (2007) Alanine peak in central neu-rocytomas on proton MR spectroscopy. Neuroradiology 49:551–554

    Article  PubMed  CAS  Google Scholar 

  • Krouwer HG, Kim TA, Rand SD, Prost RW, Haughton VM, Ho KC, Jaradeh SS, Meyer GA, Blindauer KA, Cusick JF, Morris GL, Walsh PR (1998) Single-voxel proton MR spectroscopy of nonneoplastic brain lesions suggestive of a neoplasm. AJNR. American Journal of Neuroradiology 19:1695–1703

    PubMed  CAS  Google Scholar 

  • Kugel H, Heindel W, Ernestus RI, Bunke J, du Mesnil R, Fried-mann G (1992) Human brain tumors: spectral patterns detected with localized H-1 MR spectroscopy. Radiology 183:701–709

    PubMed  CAS  Google Scholar 

  • Lam WW, Poon WS, Metreweli C (2002) Diffusion MR imaging in glioma: does it have any role in the pre-operation determination of grading of glioma? Clinical Radiology 57:219–225

    Article  PubMed  CAS  Google Scholar 

  • Law M, Cha S, Knopp EA, Johnson G, Arnett J, Litt AW (2002) High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 222:715–721

    Article  PubMed  Google Scholar 

  • Lazareff JA, Gupta RK, Alger J (1999) Variation of post-treatment H-MRSI choline intensity in pediatric gliomas. Journal of Neurooncology 41:291–298

    Article  CAS  Google Scholar 

  • Lehnhardt FG, Rohn G, Ernestus RI, Grune M, Hoehn M (2001) 1H- and (31)P-MR spectroscopy of primary and recurrent human brain tumors in vitro: malignancy-characteristic profiles of water soluble and lipophilic spectral components. NMR in Biomedicine 14:307–317

    Article  PubMed  CAS  Google Scholar 

  • Lev MH, Grant PE (2000) MEG versus BOLD MR imaging: functional imaging, the next generation? AJNR. American Journal of Neuroradiology 21:1369–1370

    PubMed  CAS  Google Scholar 

  • Lin A, Bluml S, Mamelak AN (1999) Efficacy of proton magnetic resonance spectroscopy in clinical decision making for patients with suspected malignant brain tumors. Journal of Neurooncology 45:69–81

    Article  CAS  Google Scholar 

  • Lorberboym M, Mandell LR, Mosesson RE, Germano I, Lou W, DaCosta M, Linzer DG, Machac J (1997) The role of thallium-201 uptake and retention in intracranial tumors after radiotherapy. Journal of Nuclear Medicine 38:223–226

    PubMed  CAS  Google Scholar 

  • Ludemann L, Hamm B, Zimmer C (2000) Pharmacokinetic analysis of glioma compartments with dynamic Gd-DTPA-enhanced magnetic resonance imaging. Magnetic Resonance Imaging 18:1201–1214

    Article  PubMed  CAS  Google Scholar 

  • Maeda M, Itoh S, Kimura H, Iwasaki T, Hayashi N, Yamamoto K, Ishii Y, Kubota T (1993) Tumor vascularity in the brain: evaluation with dynamic susceptibility-contrast MR imaging. Radiology 189:233–238

    PubMed  CAS  Google Scholar 

  • Maria BL, Drane WE, Quisling RG, Ringdahl DM, Mickle JP, Mendenhall NP, Marcus RB Jr, McCollough WM, Hamed LM, Eskin TA et al (1994) Value of thallium-201 SPECT imaging in childhood brain tumors. Pediatric Neurosur-gery 20:11–18

    Article  CAS  Google Scholar 

  • Maria BL, Drane WB, Quisling RJ, Hoang KB (1997) Correlation between gadolinium-diethylenetriaminepentaacetic acid contrast enhancement and thallium-201 chloride uptake in pediatric brainstem glioma. Journal of Child Neurology 12:341–348

    Article  PubMed  CAS  Google Scholar 

  • Maria BL, Drane WE, Mastin ST, Jimenez LA (1998) Comparative value of thallium and glucose SPECT imaging in childhood brain tumors. Pediatric Neurology 19:351–357

    Article  PubMed  CAS  Google Scholar 

  • Martin E, Marcar VL (2001) Functional MR imaging in pediatrics. Magnetic Resonance Imaging Clinics of North America 9:231–246; ix–x

    PubMed  CAS  Google Scholar 

  • Martin AJ, Liu H, Hall WA, Truwit CL (2001) Preliminary assessment of turbo spectroscopic imaging for targeting in brain biopsy. AJNR. American Journal of Neuroradiology 22:959–968

    PubMed  CAS  Google Scholar 

  • Massager N, David P, Goldman S, Pirotte B, Wikler D, Salmon I, Nagy N, Brotchi J, Levivier M (2000) Combined magnetic resonance imaging- and positron emission tomography-guided stereotactic biopsy in brainstem mass lesions: diagnostic yield in a series of 30 patients. Journal of Neu-rosurgery 93:951–957

    CAS  Google Scholar 

  • McKnight TR, Noworolski SM, Vigneron DB, Nelson SJ (2001) An automated technique for the quantitative assessment of 3D-MRSI data from patients with glioma. Journal of Magnetic Resonance Imaging 13:167–177

    Article  PubMed  CAS  Google Scholar 

  • Melhem ER, Itoh R, Jones L, Barker PB (2000) Diffusion tensor MR imaging of the brain: effect of diffusion weighting on trace and anisotropy measurements. AJNR. American Journal of Neuroradiology 21:1813–1820

    PubMed  CAS  Google Scholar 

  • Mitchell DG (1999) MRI principles. WB Saunders, Philadelphia

    Google Scholar 

  • Moreno-Torres A, Martinez-Perez I, Baquero M, Campistol J, Capdevila A, Arus C, Pujol J (2004) Taurine detection by proton magnetic resonance spectroscopy in medulloblas-toma: contribution to noninvasive differential diagnosis with cerebellar astrocytoma. Neurosurgery 55:824–829; discussion 829

    Article  PubMed  Google Scholar 

  • Moyher SE, Wald LL, Nelson SJ, Hallam D, Dillon WP, Norman D, Vigneron DB (1997) High resolution T2-weighted imaging of the human brain using surface coils and an analytical reception profile correction. Journal of Magnetic Resonance Imaging 7:512–517

    Article  PubMed  CAS  Google Scholar 

  • Muzi M, Spence AM, O'Sullivan F, Mankoff DA, Wells JM, Gri-erson JR, Link JM, Krohn KA (2006) Kinetic analysis of 3¢-deoxy-3¢-18F-fluorothymidine in patients with gliomas. Journal of Nuclear Medicine 47:1612–1621

    PubMed  CAS  Google Scholar 

  • Negendank WG, Sauter R, Brown TR, Evelhoch JL, Falini A, Gotsis ED, Heerschap A, Kamada K, Lee BC, Mengeot MM, Moser E, Padavic-Shaller KA, Sanders JA, Spraggins TA, Stillman AE, Terwey B, Vogl TJ, Wicklow K, Zimmerman RA (1996) Proton magnetic resonance spectroscopy in patients with glial tumors: a multicenter study. Journal of Neurosurgery 84:449–458

    Article  PubMed  CAS  Google Scholar 

  • Nelson SJ, Nalbandian AB, Proctor E, Vigneron DB (1994) Registration of images from sequential MR studies of the brain. Journal of Magnetic Resonance Imaging 4:877–883

    Article  PubMed  CAS  Google Scholar 

  • Nelson SJ, Huhn S, Vigneron DB, Day MR, Wald LL, Prados M, Chang S, Gutin PH, Sneed PK, Verhey L, Hawkins RA, Dillon WP (1997a) Volume MRI and MRSI techniques for the quantitation of treatment response in brain tumors: presentation of a detailed case study. Journal of Magnetic Resonance Imaging 7:1146–1152

    Article  CAS  Google Scholar 

  • Nelson SJ, Vigneron DB, Star-Lack J, Kurhanewicz J (1997b) High spatial resolution and speed in MRSI. NMR in Bio-medicine 10:411–422

    Article  CAS  Google Scholar 

  • Nelson SJ, Vigneron DB, Dillon WP (1999) Serial evaluation of patients with brain tumors using volume MRI and 3D 1H MRSI. NMR in Biomedicine 12:123–138

    Article  PubMed  CAS  Google Scholar 

  • Norfray JF, Tomita T, Byrd SE, Ross BD, Berger PA, Miller RS (1999) Clinical impact of MR spectroscopy when MR imaging is indeterminate for pediatric brain tumors. AJR. American Journal of Roentgenology 173:119–125

    PubMed  CAS  Google Scholar 

  • O'Tuama LA, Poussaint TY, Anthony DC, Treves ST (1998) Childhood brain tumor: neuroimaging correlated with disease outcome. Pediatric Neurology 19:259–262

    Article  PubMed  Google Scholar 

  • Ogawa T, Kanno I, Shishido F, Inugami A, Higano S, Fujita H, Murakami M, Uemura K, Yasui N, Mineura K et al (1991) Clinical value of PET with 18F-fluorodeoxyglucose and L-methyl-11C-methionine for diagnosis of recurrent brain tumor and radiation injury. Acta Radiologica 32:197–202

    Article  PubMed  CAS  Google Scholar 

  • Otsubo H, Snead OC 3rd (2001) Magnetoencephalography and magnetic source imaging in children. Journal of Child Neurology 16:227–235

    PubMed  CAS  Google Scholar 

  • Ott D, Hennig J, Ernst T (1993) Human brain tumors: assessment with in vivo proton MR spectroscopy. Radiology 186:745–752

    PubMed  CAS  Google Scholar 

  • Papanicolaou AC, Simos PG, Breier JI, Wheless JW, Mancias P, Baumgartner JE, Maggio WW, Gormley W, Constantinou JE, Butler II (2001) Brain plasticity for sensory and linguistic functions: a functional imaging study using magneto-encephalography with children and young adults. Journal of Child Neurology 16:241–252

    PubMed  CAS  Google Scholar 

  • Peters AM (1998) Fundamentals of tracer kinetics for radiologists. British Journal of Radiology 71:1116–1129

    PubMed  CAS  Google Scholar 

  • Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648

    PubMed  CAS  Google Scholar 

  • Pirotte B, Acerbi F, Lubansu A, Goldman S, Brotchi J, Levivier M (2007) PET imaging in the surgical management of pediat-ric brain tumors. Childs Nervous System 23:739–751

    Article  Google Scholar 

  • Plate KH, Mennel HD (1995) Vascular morphology and angio-genesis in glial tumors. Experimental and Toxicologic Pathology 47:89–94

    Article  PubMed  CAS  Google Scholar 

  • Poptani H, Gupta RK, Roy R, Pandey R, Jain VK, Chhabra DK (1995) Characterization of intracranial mass lesions with in vivo proton MR spectroscopy. AJNR. American Journal of Neuroradiology 16:1593–1603

    PubMed  CAS  Google Scholar 

  • Poupon C, Clark CA, Frouin V, Regis J, Bloch I, Le Bihan D, Mangin J (2000) Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles. Neuroimage 12:184–195

    Article  PubMed  CAS  Google Scholar 

  • Poussaint TY, Siffert J, Barnes PD, Pomeroy SL, Goumnerova LC, Anthony DC, Sallan SE, Tarbell NJ (1995) Hemorrhagic vasculopathy after treatment of central nervous system neoplasia in childhood: diagnosis and follow-up. AJNR. American Journal of Neuroradiology 16:693–699

    PubMed  CAS  Google Scholar 

  • Provenzale JM, Arata MA, Turkington TG, McLendon RE, Coleman RE (1999) Gangliogliomas: characterization by registered positron emission tomography-MR images. AJR. American Journal of Roentgenology 172:1103–1107

    PubMed  CAS  Google Scholar 

  • Pui MH (2000) Magnetization transfer analysis of brain tumor, infection, and infarction. Journal of Magnetic Resonance Imaging 12:395–399

    Article  PubMed  CAS  Google Scholar 

  • Pujol J, Conesa G, Deus J, Lopez-Obarrio L, Isamat F, Capdevila A (1998) Clinical application of functional magnetic resonance imaging in presurgical identification of the central sulcus. Journal of Neurosurgery 88:863–869

    Article  PubMed  CAS  Google Scholar 

  • Ricci PE, Karis J P, Heiserman JE, Fram EK, Bice AN, Drayer BP (1998) Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? AJNR. American Journal of Neuroradiology 19:407–413

    PubMed  CAS  Google Scholar 

  • Roberts T P, Rowley HA (1997) Mapping of the sensorimo-tor cortex: functional MR and magnetic source imaging. AJNR. American Journal of Neuroradiology 18:871–880

    PubMed  CAS  Google Scholar 

  • Roberts HC, Roberts TP, Brasch RC, Dillon WP (2000a) Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR. American Journal of Neuroradiology 21:891–899

    CAS  Google Scholar 

  • Roberts TP, Disbrow EA, Roberts HC, Rowley HA (2000b) Quantification and reproducibility of tracking cortical extent of activation by use of functional MR imaging and magnetoencephalography. AJNR. American Journal of Neuroradiology 21:1377–1387

    CAS  Google Scholar 

  • Rosen BR, Belliveau JW, Vevea JM, Brady TJ (1990) Perfusion imaging with NMR contrast agents. Magnetic Resonance in Medicine 14:249–265

    Article  PubMed  CAS  Google Scholar 

  • Rosen BR, Belliveau JW, Aronen HJ, Kennedy D, Buchbinder BR, Fischman A, Gruber M, Glas J, Weisskoff RM, Cohen MS et al (1991) Susceptibility contrast imaging of cerebral blood volume: human experience. Magnetic Resonance in Medicine 22:293–299; discussion 300–293

    Article  PubMed  CAS  Google Scholar 

  • Rumboldt Z, Camacho DL, Lake D, Welsh CT, Castillo M (2006) Apparent diffusion coefficients for differentiation of cer-ebellar tumors in children. AJNR. American Journal of Neuroradiology 27:1362–1369

    PubMed  CAS  Google Scholar 

  • Salibi N, Brown MA (1998) Clinical MR spectroscopy (first principles). Wiley-Liss, New York

    Google Scholar 

  • Schneider JF, Confort-Gouny S, Viola A, Le Fur Y, Viout P, Bennathan M, Chapon F, Figarella-Branger D, Cozzone P, Girard N (2007) Multiparametric differentiation of posterior fossa tumors in children using diffusion-weighted imaging and short echo-time 1H-MR spectroscopy. Journal of Magnetic Resonance Imaging 26:1390–1398

    Article  PubMed  CAS  Google Scholar 

  • Shimizu H, Kumabe T, Tominaga T, Kayama T, Hara K, Ono Y, Sato K, Arai N, Fujiwara S, Yoshimoto T (1996) Noninvasive evaluation of malignancy of brain tumors with proton MR spectroscopy. AJNR. American Journal of Neuroradiology 17:737–747

    PubMed  CAS  Google Scholar 

  • Shino A, Nakasu S, Matsuda M, Handa J, Morikawa S, Inubushi T (1999) Noninvasive evaluation of the malignant potential of intracranial meningiomas performed using proton magnetic resonance spectroscopy. Journal of Neurosur-gery 91:928–934

    Article  CAS  Google Scholar 

  • Shinoura N, Nishijima M, Hara T, Haisa T, Yamamoto H, Fujii K, Mitsui I, Kosaka N, Kondo T (1997) Brain tumors: detection with C-11 choline PET. Radiology 202:497–503

    PubMed  CAS  Google Scholar 

  • Shtern F (1992) Clinical experimentation in magnetic resonance spectroscopy: a perspective from the National Cancer Institute. NMR in Biomedicine 5:325–328

    Article  PubMed  CAS  Google Scholar 

  • Shukla-Dave A, Gupta RK, Roy R, Husain N, Paul L, Venkatesh SK, Rashid MR, Chhabra DK, Husain M (2001) Prospective evaluation of in vivo proton MR spectroscopy in differentiation of similar appearing intracranial cystic lesions. Magnetic Resonance Imaging 19:103–110

    Article  PubMed  CAS  Google Scholar 

  • Siegal T, Rubinstein R, Tzuk-Shina T, Gomori JM (1997) Utility of relative cerebral blood volume mapping derived from perfusion magnetic resonance imaging in the routine follow up of brain tumors. Journal of Neurosurgery 86:22–27

    Article  PubMed  CAS  Google Scholar 

  • Sijens PE, Vecht CJ, Levendag PC, van Dijk P, Oudkerk M (1995) Hydrogen magnetic resonance spectroscopy follow-up after radiation therapy of human brain cancer. Unexpected inverse correlation between the changes in tumor choline level and post-gadolinium magnetic resonance imaging contrast. Investigative Radiology 30:738–744

    CAS  Google Scholar 

  • Simos PG, Papanicolaou AC, Breier JI, Wheless JW, Constanti-nou JE, Gormley WB, Maggio WW (1999) Localization of language-specific cortex by using magnetic source imaging and electrical stimulation mapping. Journal of Neuro-surgery 91:787–796

    CAS  Google Scholar 

  • Smith JS, Cha S, Mayo MC, McDermott MW, Parsa AT, Chang SM, Dillon W P, Berger MS (2005) Serial diffusion-weighted magnetic resonance imaging in cases of glioma: distinguishing tumor recurrence from postresection injury. Journal of Neurosurgery 103:428–438

    Article  PubMed  Google Scholar 

  • Smith JS, Chang EF, Lamborn KR, Chang SM, Prados MD, Cha S, Tihan T, Vandenberg S, McDermott MW, Berger MS (2008) Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. Journal of Clinical Oncology 26:1338–1345

    Article  PubMed  Google Scholar 

  • Stadnik TW, Chaskis C, Michotte A, Shabana WM, van Rom-paey K, Luypaert R, Budinsky L, Jellus V, Osteaux M (2001) Diffusion-weighted MR imaging of intracerebral masses: comparison with conventional MR imaging and histo-logic findings. AJNR. American Journal of Neuroradiology 22:969–976

    PubMed  CAS  Google Scholar 

  • Stippich C, Freitag P, Kassubek J, Soros P, Kamada K, Kober H, Scheffler K, Hopfengartner R, Bilecen D, Radu EW, Vieth JB (1998) Motor, somatosensory and auditory cortex localization by fMRI and MEG. NeuroReport 9:1953–1957

    Article  PubMed  CAS  Google Scholar 

  • Strong JA, Hatten HP Jr, Brown MT, Debatin JF, Friedman HS, Oakes WJ, Tien R (1993) Pilocytic astrocytoma: correlation between the initial imaging features and clinical aggressiveness. AJR. American Journal of Roentgenology 161:369–372

    PubMed  CAS  Google Scholar 

  • Sugahara T, Korogi Y, Kochi M, Ikushima I, Hirai T, Okuda T, Shigematsu Y, Liang L, Ge Y, Ushio Y, Takahashi M (1998) Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR. American Journal of Roentgenology 171:1479–1486

    PubMed  CAS  Google Scholar 

  • Sugahara T, Korogi Y, Shigematsu Y, Liang L, Yoshizumi K, Kitajima M, Takahashi M (1999) Value of dynamic susceptibility contrast magnetic resonance imaging in the evaluation of intracranial tumors. Topics in Magnetic Resonance Imaging 10:114–124

    Article  PubMed  CAS  Google Scholar 

  • Sugahara T, Korogi Y, Tomiguchi S, Shigematsu Y, Ikushima I, Kira T, Liang L, Ushio Y, Takahashi M (2000) Posttherapeu-tic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR. American Journal of Neuroradiology 21:901–909

    PubMed  CAS  Google Scholar 

  • Sugahara T, Korogi Y, Kochi M, Ushio Y, Takahashi M (2001) Perfusion-sensitive MR imaging of gliomas: comparison between gradient-echo and spin-echo echo-planar imaging techniques. AJNR. American Journal of Neuroradiol-ogy 22:1306–1315

    CAS  Google Scholar 

  • Sutton LN, Wang Z, Gusnard D, Lange B, Perilongo G, Bogdan AR, Detre JA, Rorke L, Zimmerman RA (1992) Proton magnetic resonance spectroscopy of pediatric brain tumors. Neurosurgery 31:195–202

    Article  PubMed  CAS  Google Scholar 

  • Suzuki A, Yasui N (1992) Intraoperative localization of the central sulcus by cortical somatosensory evoked potentials in brain tumor. Case report. Journal of Neurosurgery 76:867–870

    Article  CAS  Google Scholar 

  • Szigety SK, Allen PS, Huyser-Wierenga D, Urtasun RC (1993) The effect of radiation on normal human CNS as detected by NMR spectroscopy. International Journal of Radiation Oncology, Biology, Physics 25:695–701

    Article  PubMed  CAS  Google Scholar 

  • Szymanski MD, Perry DW, Gage NM, Rowley HA, Walker J, Berger MS, Roberts TP (2001) Magnetic source imaging of late evoked field responses to vowels: toward an assessment of hemispheric dominance for language. Journal of Neuro-surgery 94:445–453

    CAS  Google Scholar 

  • Tanner SF, Ramenghi LA, Ridgway JP, Berry E, Saysell MA, Martinez D, Arthur RJ, Smith MA, Levene MI (2000) Quantitative comparison of intrabrain diffusion in adults and preterm and term neonates and infants. AJR. American Journal of Roentgenology 174:1643–1649

    PubMed  CAS  Google Scholar 

  • Taylor JS, Langston JW, Reddick WE, Kingsley PB, Ogg RJ, Pui MH, Kun LE, Jenkins JJ 3rd, Chen G, Ochs JJ, Sanford RA, Heideman RL (1996) Clinical value of proton magnetic resonance spectroscopy for differentiating recurrent or residual brain tumor from delayed cerebral necrosis. International Journal of Radiation Oncology, Biology, Physics 36:1251–1261

    Article  PubMed  CAS  Google Scholar 

  • Tomoi M, Kimura H, Yoshida M, Itoh S, Kawamura Y, Hayashi N, Yamamoto K, Kubota T, Ishii Y (1997) Alterations of lac-tate (+lipid) concentration in brain tumors with in vivo hydrogen magnetic resonance spectroscopy during radiotherapy. Investigative Radiology 32:288–296

    Article  PubMed  CAS  Google Scholar 

  • Tzika AA, Vigneron DB, Dunn RS, Nelson SJ, Ball WS Jr (1996) Intracranial tumors in children: small single-voxel proton MR spectroscopy using short- and long-echo sequences. Neuroradiology 38:254–263

    Article  PubMed  CAS  Google Scholar 

  • Tzika AA, Vajapeyam S, Barnes PD (1997) Multivoxel proton MR spectroscopy and hemodynamic MR imaging of childhood brain tumors: preliminary observations. AJNR. American Journal of Neuroradiology 18:203–218

    PubMed  CAS  Google Scholar 

  • Tzika AA, Zurakowski D, Poussaint TY, Goumnerova L, Astra-kas LG, Barnes PD, Anthony DC, Billett AL, Tarbell NJ, Scott RM, Black PM (2001) Proton magnetic spectroscopic imaging of the child's brain: the response of tumors to treatment. Neuroradiology 43:169–177

    Article  PubMed  CAS  Google Scholar 

  • Tzika AA, ZarifiMK, Goumnerova L, Astrakas LG, Zurakowski D, Young-Poussaint T, Anthony DC, Scott RM, Black PM (2002) Neuroimaging in pediatric brain tumors: Gd-DTPA-enhanced, hemodynamic, and diffusion MR imaging compared with MR spectroscopic imaging. AJNR. American Journal of Neuroradiology 23:322–333

    PubMed  Google Scholar 

  • Ullrich R, Backes H, Li H, Kracht L, Miletic H, Kesper K, Neumaier B, Heiss WD, Wienhard K, Jacobs AH (2008) Glioma proliferation as assessed by 3 ¢ -fluoro-3¢-deoxy-L-thymidine positron emission tomography in patients with newly diagnosed high-grade glioma. Clinical Cancer Research 14:2049–2055

    Article  PubMed  CAS  Google Scholar 

  • Urenjak J, Williams SR, Gadian DG, Noble M (1993) Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. Journal of Neurosci-ence 13:981–989

    CAS  Google Scholar 

  • Usenius T, Usenius JP, Tenhunen M, Vainio P, Johansson R, Soi-makallio S, Kauppinen R (1995) Radiation-induced changes in human brain metabolites as studied by 1H nuclear magnetic resonance spectroscopy in vivo. International Journal of Radiation Oncology, Biology, Physics 33:719–724

    Article  PubMed  CAS  Google Scholar 

  • Valk PE, Dillon WP (1991) Radiation injury of the brain. AJNR. American Journal of Neuroradiology 12:45–62

    PubMed  CAS  Google Scholar 

  • Valk PE, Budinger TF, Levin VA, Silver P, Gutin PH, Doyle WK (1988) PET of malignant cerebral tumors after interstitial brachytherapy. Demonstration of metabolic activity and correlation with clinical outcome. Journal of Neurosurgery 69:830–838

    Article  PubMed  CAS  Google Scholar 

  • Venkatesh SK, Gupta RK, Pal L, Husain N, Husain M (2001) Spectroscopic increase in choline signal is a nonspecific marker for differentiation of infective/inflammatory from neoplastic lesions of the brain. Journal of Magnetic Resonance Imaging 14:8–15

    Article  PubMed  CAS  Google Scholar 

  • Vezina LG (1997) Diagnostic imaging in neuro-oncology. Pedi-atric Clinics of North America 44:701–719

    Article  CAS  Google Scholar 

  • Vigneron D, Bollen A, McDermott M, Wald L, Day M, Moy-her-Noworolski S, Henry R, Chang S, Berger M, Dillon W, Nelson S (2001) Three-dimensional magnetic resonance spectroscopic imaging of histologically confirmed brain tumors. Magnetic Resonance Imaging 19:89–101

    Article  PubMed  CAS  Google Scholar 

  • Waldrop SM, Davis PC, Padgett CA, Shapiro MB, Morris R (1998) Treatment of brain tumors in children is associated with abnormal MR spectroscopic ratios in brain tissue remote from the tumor site. AJNR. American Journal of Neuroradiology 19:963–970

    PubMed  CAS  Google Scholar 

  • Wang Z, Sutton LN, Cnaan A, Haselgrove JC, Rorke LB, Zhao H, Bilaniuk LT, Zimmerman RA (1995) Proton MR spec-troscopy of pediatric cerebellar tumors. AJNR. American Journal of Neuroradiology 16:1821–1833

    PubMed  CAS  Google Scholar 

  • Wang GJ, Volkow ND, Lau YH, Fowler JS, Meek AG, Park TL, Wong C, Roque CT, Adler AJ, Wolf AP (1996a) Glucose met-abolic changes in nontumoral brain tissue of patients with brain tumor following radiotherapy: a preliminary study. Journal of Computer Assisted Tomography 20:709–714

    Article  CAS  Google Scholar 

  • Wang Z, Zimmerman RA, Sauter R (1996b) Proton MR spec-troscopy of the brain: clinically useful information obtained in assessing CNS diseases in children. AJR. American Journal of Roentgenology 167:191–199

    CAS  Google Scholar 

  • Weisskoff RM, Zuo CS, Boxerman JL, Rosen BR (1994) Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magnetic Resonance in Medicine 31:601–610

    Article  PubMed  CAS  Google Scholar 

  • Wheless JW, Willmore LJ, Breier JI, Kataki M, Smith JR, King DW, Meador KJ, Park YD, Loring DW, Clifton GL, Baum-gartner J, Thomas AB, Constantinou JE, Papanicolaou AC (1999) A comparison of magnetoencephalography, MRI, and V-EEG in patients evaluated for epilepsy surgery. Epi-lepsia 40:931–941

    Article  CAS  Google Scholar 

  • Wilken B, Dechent P, Herms J, Maxton C, Markakis E, Hanefeld F, Frahm J (2000) Quantitative proton magnetic resonance spectroscopy of focal brain lesions. Pediatric Neurology 23:22–31

    Article  PubMed  CAS  Google Scholar 

  • Yeung DK, Chan Y, Leung S, Poon PM, Pang C (2001) Detection of an intense resonance at 2.4 ppm in 1H MR spectra of patients with severe late-delayed, radiation-induced brain injuries. Magnetic Resonance in Medicine 45:994–1000

    Article  PubMed  CAS  Google Scholar 

  • Yousem DM, Lenkinski RE, Evans S, Allen D, O'Brien R, Cur-ran W, Schnall M, Bennett M, Wehrli SL, Grossman RI (1992) Proton MR spectroscopy of experimental radiation-induced white matter injury. Journal of Computer Assisted Tomography 16:543–548

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bryant, S.O., Cha, S., Barkovich, A.J. (2010). Modern Neuroimaging of Pediatric Brain Tumors. In: Gupta, N., Banerjee, A., Haas-Kogan, D. (eds) Pediatric CNS Tumors. Pediatric Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87979-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87979-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87976-3

  • Online ISBN: 978-3-540-87979-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics