Skip to main content

Automated Quadrilateral Coarsening by Ring Collapse

  • Conference paper
Proceedings of the 17th International Meshing Roundtable

Summary

A uniform finite element mesh rarely provides the best discretization of a domain to accommodate a solution with both optimal efficiency and minimal error. Mesh adaptation can approach a more optimal solution by accommodating regions of the mesh with higher or lower element density. Extensive attention has been given to mesh adaptation in both computational mechanics and computer graphics to provide or improve methods for increasing the model resolution or solution accuracy. The algorithm developed in this paper, entitled Automated Quadrilateral Coarsening by Ring Collapse (AQCRC), provides a unique solution to allow mesh coarsening of both structured and unstructured quadrilateral meshes. The algorithm is based on modification and removal operations utilizing the dual description of the quadrilateral mesh. The AQCRC algorithm iterates on five steps: 1) input of a coarsening region and a coarsening factor, 2) selection of coarsening rings, 3) mesh quality improvement, 4) removal of coarsening rings, and 5) mesh clean-up. Examples are presented showing the application of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bathe, K.: Finite Element Procedures. Prentice-Hall, Upper Saddle River (1996)

    Google Scholar 

  2. Schneiders, R.: Octree-based hexahedral mesh generation. Int. Journal of Comp. Geom. & Applications 10(4), 383–398 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Parrish, M.: A Selective Approach to Comformal Refinement of Unstructured Hexahedral Meshes, MS Thesis, Brigham Young Univ., Utah (2007)

    Google Scholar 

  4. Garland, M., Heckbert, P.: Surface Simplification Using Quadric Error Metrics, Carnegie Melon University (1997), http://graphics.cs.uiuc.edu/%7Egarland/papers/quadrics.pdf

  5. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh Optimization, University of Washington (1993), http://citeseer.ist.psu.edu/cache/papers/cs/797/ftp:zSzzSzftp.cs.washington.eduzSztrzSz1993zSz01zSzUW-CSE-93-01-01.pdf/hoppe93mesh.pdf

  6. Cignoni, P., Montani, C., Scopigno, R.: A Comparison of Mesh Simplification Algorithms. Computers & Graphics 22(1), 37–54 (1997)

    Article  Google Scholar 

  7. Silva, S., Silva, F., Madiera, J., Santos, B.: Evaluation of Mesh Simplification Algorithms Using PolyMeCo: A Case Study. In: Proceedings of SPIE – The International Society for Optical Engineering, Proceedings of SPIE-IS and T Electronic Imaging - Visualization and Data Analysis 2007 vol. 6495, p. 64950D (2007)

    Google Scholar 

  8. Silva, S., Madiera, J., Ferreira, C., Santos, B.: Comparison of Methods for the Simplification of Mesh Models Using Quality Indices and an Observer Study. In: Proceedings of SPIE – The International Society for Optical Engineering, Proceedings of SPIE-IS and T Electronic Imaging - Visualization and Data Analysis XII, vol. 6492, p. 64921L (2007)

    Google Scholar 

  9. Takeuci, S., Kanai, T., Suzuki, H., Shimada, K., Kimura, F.: Subdivision Surface Fitting Using QEM-based Mesh Simplification and Reconstruction of Approximated B-spline Surfaces. In: Proceedings of The Eighth Pacific Conference on Computer Graphics and Applications, October 3-5, 2000, pp. 202–212 (2000)

    Google Scholar 

  10. Cheng, A., Zhong, Z.: Local Coarsening for Quadrilateral Meshes on Autobody Tool Surface. Journal of Computer-Aided Design and Computer Graphics 14(1), 50–55 (2002)

    MathSciNet  Google Scholar 

  11. Kwak, D., Cheon, J., Im, Y.: Remeshing for metal forming simulating-Part 1: Two-dimensional Quadrilateral Remeshing. International Journal for Numerical Methods in Engineering 53(11), 2463–2500 (2002)

    Article  MATH  Google Scholar 

  12. Choi, C.: Adaptive Mesh Refinement/Recovery Strategy for FEA. Structural Engineering and Mechanics 7(3-4), 379–391 (2004)

    Google Scholar 

  13. Nikishkov, G.: Finite Element Algorithm with Adaptive Qaudtree-Octree Mesh Refinement. Anziam J. 46(E), C15–C18 (2005)

    MathSciNet  Google Scholar 

  14. Murdoch, P., Staten, S., Blacker, T., Mitchell, S.: The Spatial Twist Continuum: A Connectivity Based Method for Representing All Hexahedral Finite Element Meshes. Finite Element Analysis and Design 28(2), 137–149 (1997)

    Article  MATH  Google Scholar 

  15. Borden, M., Staten, S., Shepherd, J.: Hexahedral Sheet Extraction. In: 11th International Meshing Roundtable, Sandia National Laboratories, September 2002, pp. 147–152 (2002)

    Google Scholar 

  16. Benzley, S., Harris, N., Scott, M., Borden, M., Owen, S.: Conformal Refinement and Coarsening of Unstructured Hexahedral Meshes. Journal of Computing and Information Science Engineering 5, 330–337 (2005)

    Article  Google Scholar 

  17. Staten, M., Benzley, S., Scott, M.: A Methodology for Quadrilateral Finite Element Mesh Coarsening. To Engineering With Computers 24(3), 241–251 (2008)

    Article  Google Scholar 

  18. Dewey, M.: Automated Quadrilateral Coarsening by Ring Collapse, MS Thesis, Brigham Young University, Utah (2008)

    Google Scholar 

  19. Knupp, P.: Achieving Finite Element Mesh Quality via Optimization of the Jacobian Matrix Norm and Associated Quantities. International Journal for Numerical Methods in Engineering 48(8), 1165–1185 (2000)

    Article  MATH  Google Scholar 

  20. Kinney, P.: CleanUp: Improving Quadrilateral Finite Element Meshes. In: 6th International Meshing Roundtable, Sandia National Laboratories, October 1997, pp. 449–461 (1997)

    Google Scholar 

  21. Shepherd, J.: Topologic and Geometric Constraint Based Hexahedral Mesh Generation. PhD Thesis, University of Utah, Utah (2007)

    Google Scholar 

  22. Benzley, S., Dewey, M., Woodbury, A., Staten, M.: Enhanced Mesh Adaptation Using Localized Conformal Quadrilateral and Hexahedral Coarsening. In: Inaugural International Conference of Engineering Mechanics Institute (to be published, 2008)

    Google Scholar 

  23. Freitag, L., Plassmann, P.: Local Optimization-Based Simplical Mesh Untangling and Improvement, Technical report, Mathematics and Computer Science Division, Argonne National Laboratory (1997), http://citeseer.ist.psu.edu/277987.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dewey, M.W., Benzley, S.E., Shepherd, J.F., Staten, M.L. (2008). Automated Quadrilateral Coarsening by Ring Collapse. In: Garimella, R.V. (eds) Proceedings of the 17th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87921-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87921-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87920-6

  • Online ISBN: 978-3-540-87921-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics