Skip to main content

Tetrahedral Mesh Generation for Non-rigid Registration of Brain MRI: Analysis of the Requirements and Evaluation of Solutions

  • Conference paper
Book cover Proceedings of the 17th International Meshing Roundtable

Summary

The application we target in this paper is the registration of pre-operative Magnetic Resonance Imaging with the scans acquired intra-operatively during image-guided neurosurgery. The objective of this application is improved tracking of tumor boundaries and surrounding brain structures during open skull tumor resection. We focus on a validated, physics-based non-rigid registration approach, which has been used in clinical studies for the last three years. This approach requires tetrahedral tessellation of the brain volume for biomechanical model construction. The analysis of the requirements and available methods to construct such a discretization is the objective of our paper.

The paper presents a number of practical contributions. First, we survey the proposed approaches to tetrahedral mesh generation from medical image data. Second, we analyze the application-specific requirements to mesh generation. Third, we describe an end-to-end procedure of tetrahedral meshing for this application using off-the-shelf non-commercial software. Finally, we compare the performance of the considered mesh generation tools in the application context using generic and application-specific quantitative measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clatz, O., Delingette, H., Talos, I.-F., Golby, A.J., Kikinis, R., Jolesz, F.A., Ayache, N., Warfield, S.K.: Robust non-rigid registration to capture brain shift from intra-operative MRI. IEEE Trans. Med. Imag. 24, 1417–1427 (2005)

    Article  Google Scholar 

  2. Archip, N., Clatz, O., Whalen, S., Kacher, D., Fedorov, A., Kot, A., Chrisochoides, N., Jolesz, F., Golby, A., Black, P.M., Warfield, S.K.: Non-rigid alignment of pre-operative MRI, fMRI, and DT-MRI with intra-operative MRI for enhanced visualization and navigation in image-guided neurosurgery. NeuroImage 35, 609–624 (2007)

    Article  Google Scholar 

  3. Fedorov, A., Chrisochoides, N., Kikinis, R., Warfield, S.K.: An evaluation of three approaches to tetrahedral mesh generation for deformable registration of MR images. In: Proc. of IEEE ISBI 2006, pp. 658–661 (2006)

    Google Scholar 

  4. Hill, D.L.G., Batchelor, P.G., Holden, M., Hawkes, D.J.: Medical image registration. Physics in Medicine and Biology 46, R1–R45 (2001)

    Article  Google Scholar 

  5. Delingette, H., Ayache, N.: Soft tissue modeling for surgery simulation. In: Computational models for the human body, 1st edn. Handbook of Numerical Analysis, vol. XII, pp. 453–550. Elsevier, Amsterdam (2004)

    Google Scholar 

  6. Shewchuk, J.R.: What is a good linear element? Interpolation, conditioning, and quality measures. In: Proc. of 11th IMR, pp. 115–126 (2002)

    Google Scholar 

  7. Owen, S.J.: A survey of unstructured mesh generation technology. In: Proc. of 7th IMR, pp. 239–267 (1998)

    Google Scholar 

  8. Yoo, T.S.: Insight into images. A K Peters (2004)

    Google Scholar 

  9. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface construction algorithm. In: Proc. of ACM SIGGRAPH, pp. 163–169 (1987)

    Google Scholar 

  10. Boyd, S.K., Müller, R.: Smooth surface meshing for automated finite element model generation from 3d image data. J. of Biomechanics 39, 1287–1295 (2006)

    Article  Google Scholar 

  11. Dey, T.K., Li, G., Ray, T.: Polygonal surface remeshing with Delaunay refinement. In: Proc. of 14th IMR, pp. 343–361 (2005)

    Google Scholar 

  12. Cebral, J., Castro, M.A., Löhner, R., Burgess, J.E., Pergolizzi, R., Putman, C.M.: Recent developments in patient-specific image-based modeling of hemodynamics. Mecanica Computacional XXIII, 1471–1482 (2004)

    Google Scholar 

  13. Amenta, N., Bern, M.: Surface reconstruction by Voronoi filtering. In: Proc. of 14th SCG, pp. 39–48. ACM Press, New York (1998)

    Google Scholar 

  14. Kolluri, R., Shewchuk, J.R., O’Brien, J.F.: Spectral surface reconstruction from noisy point clouds. In: Proc. of SGP 2004, pp. 11–21 (2004)

    Google Scholar 

  15. Dey, T.K., Levine, J.A.: Delaunay meshing of isosurfaces. In: Proc. of IEEE Int. Conf. on Shape Modeling and Applications (SMI 2007), pp. 241–250 (2007)

    Google Scholar 

  16. Boissonnat, J.-D., Oudot, S.: Provably good sampling and meshing of surfaces. Graphical Models 67, 405–451 (2005)

    Article  MATH  Google Scholar 

  17. Frey, P., Sarter, B., Gautherie, M.: Fully automatic mesh generation for 3-d domains based upon voxel sets. Int. J. for Num. Meth. in Engng. 37, 2735–2753 (1994)

    Article  MATH  Google Scholar 

  18. Zhang, Y., Bajaj, C., Sohn, B.-S.: 3d finite element meshing from imaging data. Comp. Meth. in App. Mech. and Engng. 194, 5083–5106 (2005)

    Article  MATH  Google Scholar 

  19. Cline, H.E., Lorensen, W.E., Kikinis, R., Jolesz, F.: Three-dimensional segmentation of MR images of the head using probability and connectivity. J. of Comp. Assisted Tomography 14, 1037–1045 (1990)

    Article  Google Scholar 

  20. Cebral, J.R., Löhner, R.: From medical images to CFD meshes. In: Proc. of 8th IMR, pp. 321–331 (1999)

    Google Scholar 

  21. Hartmann, U., Kruggel, F.: A fast algorithm for generating large tetrahedral 3d finite element meshes from magnetic resonance tomograms. In: IEEE Workshop on Biomedical Image Analysis, p. 184 (1998)

    Google Scholar 

  22. Udeshi, T.: Tetrahedral mesh generation from segmented voxel data. In: Proc. of 12th IMR, pp. 425–436 (2003)

    Google Scholar 

  23. Yerry, M.A., Shephard, M.S.: Automatic three-dimensional mesh generation by the modified-octree technique. Int. J. Num. Meth. Engng 20, 1965–1990 (1984)

    Article  MATH  Google Scholar 

  24. Mitchell, S.A., Vavasis, S.A.: Quality mesh generation in higher dimensions. SIAM J. Comp. 29, 1334–1370 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ferrant, M.: Physics-based Deformable Modeling of Volumes and Surfaces for Medical Image Registration, Segmentation and Visualization. PhD thesis, Universite’ Catholique de Louvain (2001)

    Google Scholar 

  26. Mohamed, A., Davatzikos, C.: Finite element mesh generation and remeshing from segmented medical images. In: Proc. of IEEE ISBI, pp. 420–423 (2004)

    Google Scholar 

  27. Fedorov, A., Chrisochoides, N., Kikinis, R., Warfield, S.K.: Tetrahedral mesh generation for medical imaging. ISC Insight Journal, 2005 MICCAI Open Source Workshop (2005), http://hdl.handle.net/1926/35

  28. Freitag, L.A., Knupp, P.M., Munson, T.S., Shontz, S.M.: A comparison of optimization software for mesh shape-quality improvement problems. In: Proc. of 11th IMR, pp. 29–40 (2002)

    Google Scholar 

  29. Castellano-Smith, A.D., Hartkens, T., Schnabel, J., Hose, D.R., Liu, H., Hall, W.A., Truwit, C.L., Hawkes, D.J., Hill, D.L.G.: Constructing patient specific models for correcting intraoperative brain deformation. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 1091–1098. Springer, Heidelberg (2001)

    Google Scholar 

  30. Molino, N.P., Bridson, R., Teran, J., Fedkiw, R.: A crystalline, red green strategy for meshing highly deformable objects with tetrahedra. In: Proc. of 12th IMR, pp. 103–114 (2003)

    Google Scholar 

  31. Persson, P.O., Strang, G.: A simple mesh generator in MATLAB. SIAM Review 46, 329–345 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Si, H.: On refinement of constrained Delaunay tetrahedralizations. In: Proc. of 15th IMR, pp. 509–528 (2006)

    Google Scholar 

  33. Schöberl, J.: NETGEN: An advancing front 2d/3d-mesh generator based on abstract rules. Computing and Visualization in Science 1, 41–52 (1997)

    Article  MATH  Google Scholar 

  34. Brewer, M., Diachin, L.F., Knupp, P.M., Leurent, T., Melander, D.J.: The Mesquite mesh quality improvement toolkit. In: Proc. of 12th IMR, pp. 239–250 (2003)

    Google Scholar 

  35. CGAL: Cgal, Computational Geometry Algorithms Library (2008), http://www.cgal.org

  36. Ibanez, L., Schroeder, W.J.: The ITK Software Guide. Kitware Inc. (2003)

    Google Scholar 

  37. Billet, E., Fedorov, A., Chrisochoides, N.: The use of robust local Hausdorff distances in accuracy assessment for image alignment of brain MRI. ISC Insight Journal (January-June 2008), http://hdl.handle.net/1926/1354

  38. Baker, T.J.: Mesh movement and metamorphosis. Engng with Comp. 18, 188–198 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fedorov, A., Chrisochoides, N. (2008). Tetrahedral Mesh Generation for Non-rigid Registration of Brain MRI: Analysis of the Requirements and Evaluation of Solutions. In: Garimella, R.V. (eds) Proceedings of the 17th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87921-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87921-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87920-6

  • Online ISBN: 978-3-540-87921-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics