Skip to main content

Subdivision Templates for Converting a Non-conformal Hex-Dominant Mesh to a Conformal Hex-Dominant Mesh without Pyramid Elements

  • Conference paper
Proceedings of the 17th International Meshing Roundtable

Abstract

This paper presents a computational method for converting a non-conformal hex-dominant mesh to a conformal hex-dominant mesh without help of pyramid elements. During the conversion, the proposed method subdivides a non-conformal element by applying a subdivision template and conformal elements by a conventional subdivision scheme. Although many finite element solvers accept mixed elements, some of them require a mesh to be conformal without a pyramid element. None of the published automated methods could create a conformal hex-dominant mesh without help of pyramid elements, and therefore the applicability of the hex-dominant mesh has been significantly limited. The proposed method takes a non-conformal hex-dominant mesh as an input and converts it to a conformal hex-dominant mesh that consists only of hex, tet, and prism elements. No pyramid element will be introduced. The conversion thus considerably increases the applicability of the hex-dominant mesh in many finite element solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. George, P.L.: Tet Meshing: Construction, Optimization and Adaptation. In: Proceedings of 8th International Meshing Roundtable, pp. 133–141 (1999)

    Google Scholar 

  2. Yamakawa, S., Shimada, K.: Anisotropic Tetrahedral Meshing via Bubble Packing and Advancing Front. International Journal for Numerical Methods in Engineering 57, 1923–1942 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Shewchuk, J.: Constrained Delaunay Tetrahedralizations and Provably Good Boundary Recovery. In: Proceedings of 11th International Meshing Roundtable, pp. 193–204 (2002)

    Google Scholar 

  4. Blacker, T.D., Meyers, R.J.: Seams and Wedges in Plastering: A 3-D Hexahedral Mesh Generation Algorithm. Engineering with Computers 2, 83–93 (1993)

    Article  Google Scholar 

  5. Schneiders, R.: A Grid-based Algorithm for the Generation of Hexahedral Element Meshes. Engineering with Computers 12, 168–177 (1996)

    Article  Google Scholar 

  6. Tautges, T.J., Blacker, T., Mitchell, S.A.: The Whisker Weaving Algorithm: A Connectivity-Based Method for Constructing All-Hexahedral Finite Element Meshes. International Journal for Numerical Methods in Engineering 39, 3327–3349 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ledoux, F., Weill, J.-C.: An Extension of the Reliable Whisker Weaving Algorithm. In: Proceedings of 16th International Meshing Roundtable, pp. 215–232 (2007)

    Google Scholar 

  8. Staten, M.L., Owen, S.J., Blacker, T.D.: Unconstrained Paving & Plastering: A New Idea for All Hexahedral Mesh Generation. In: Proceedings of 14th International Meshing Roundtable, pp. 399–416 (2005)

    Google Scholar 

  9. Taghavi, R.: Automatic Block Decomposition Using Fuzzy Logic Analysis. In: Proceedings of 9th International Mething Roundtable, pp. 187–192 (2000)

    Google Scholar 

  10. Kwak, D.-Y., Im, Y.-T.: Remeshing for Metal Forming Simulations-Part II: Three-Dimensional Hexahedral Mesh Generation. International Journal for Numerical Methods in Engineering 53, 2501–2528 (2002)

    Article  MATH  Google Scholar 

  11. Hariya, M., Nishigaki, I., Kataoka, I., Hiro, Y.: Automatic Hexahedral Mesh Generation with Feature Line Extraction. In: Proceedings of 15th International Meshing Roundtable, pp. 453–467 (2006)

    Google Scholar 

  12. Maréchal, L.: A New Approach to Octree-Based Hexahedral Meshing. In: Proceedings of 10th International Meshing Roundtable, pp. 209–221 (2001)

    Google Scholar 

  13. Yamakawa, S., Shimada, K.: HEXHOOP: Modular Templates for Converting a Hex-Dominant Mesh to an ALL-Hex Mesh. Engineering with Computers 18, 211–228 (2002)

    Article  Google Scholar 

  14. Mitchell, S.A.: The All-Hex Geode-Template for Conforming a Diced Tetrahedral Mesh to any Diced Hexahedral Mesh. In: Proceedings of 7th International Meshing Roundtable, pp. 295–305 (1998)

    Google Scholar 

  15. White, D.R., Tautges, T.J.: Automatic Scheme Selection for Toolkit Hex Meshing. International Journal for Numerical Methods in Engineering 49, 127–144 (2000)

    Article  MATH  Google Scholar 

  16. Lai, M., Benzley, S., White, D.: Automated Hexahedral Mesh Generation by Generalized Multiple Source to Multiple Target Sweeping. International Journal for Numerical Methods in Engineering 49, 261–275 (2000)

    Article  MATH  Google Scholar 

  17. Shepherd, J., Mitchell, S.A., Knupp, P., White, D.: Methods for Multisweep Automation. In: Proceedings of 9th International Meshing Roundtable, pp. 77–87 (2000)

    Google Scholar 

  18. Quadros, W.R., Shimada, K.: Hex-Layer: Layered All-Hex Mesh Generation on Thin Section Solids via Chordal Surface Transformation. In: Proceedings of 11th International Meshing Roundtable, pp. 169–180 (2002)

    Google Scholar 

  19. Meshkat, S., Talmor, D.: Generating a Mixed Mesh of Hexahedra, Pentahedra and Tetrahedra from an Underlying Tetrahedral Mesh. International Journal for Numerical Methods in Engineering 49, 17–30 (2000)

    Article  MATH  Google Scholar 

  20. Meyers, R.J., Tautges, T.J., Tuchinsky, P.M.: The "Hex-Tet" Hex-Dominant Meshing Algorithm as Implemented in CUBIT. In: Proceedings of 7th International Meshing Roundtable, pp. 151–158 (1998)

    Google Scholar 

  21. Owen, S.J., Saigal, S.: H-Morph: an Indirect Approach to Advancing Front Hex Meshing. International Journal for Numerical Methods in Engineering 49, 289–312 (2000)

    Article  MATH  Google Scholar 

  22. Yamakawa, S., Shimada, K.: Hex-Dominant Mesh Generation with Directionality Control via Packing Rectangular Solid Cells. In: Proceedings of Geometric Modeling and Processing (2002)

    Google Scholar 

  23. Becker, E.B., Carey, G.F., Oden, J.T.: Finite Elements: an Introduction, vol. 1. Prentice-Hall, Englewood Cliffs (1981)

    MATH  Google Scholar 

  24. Knupp, P.M.: Achieving Finite Element Mesh Quality via Optimization of the Jacobian Matrix Norm and Associated Quantities. Part II - A Framework for Volume Mesh Optimization and the Condition Number of the Jacobian Matrix. International Journal for Numerical Methods in Engineering 48, 1165–1185 (2000)

    Article  MATH  Google Scholar 

  25. Freitag, L.A., Plassmann, P.E.: Local Optimization-based Untangling Algorithms for Quadrilateral Meshes. In: Proceedings of 10th International Meshing Roundtable, pp. 397–406 (2001)

    Google Scholar 

  26. Zhou, T., Shimada, K.: An Angle-Based Approach to Two-dimensional Mesh Smoothing. In: Proceedings of 9th International Meshing Roundtable, pp. 373–384 (2000)

    Google Scholar 

  27. Calvo, N.A., Idelsohn, S.R.: All-Hexahedral Mesh Smoothing with a Node-Based Measure of Quality. International Journal for Numerical Methods in Engineering 50, 1957–1967 (2001)

    Article  MATH  Google Scholar 

  28. Klingner, B.M., Shewchuck, J.R.: Aggressive Tetrahedral Mesh Improvement. In: Proceedings of 16th International Meshing Roundtable, pp. 3–23 (2007)

    Google Scholar 

  29. Joe, B.: Construction of Three-Dimensional Improved-Quality Triangulations Using Local Transformations. SIAM Journal on Scientific Computing 16, 1292–1307 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  30. Molinari, J.F., Ortiz, M.: Three-Dimensional Adaptive Meshing by Subdivision and Edge-Collapse in Finite-Deformation Dynamic-Plasticity Problems with Application to Adiabatic Shear Banding. International Journal for Numerical Methods in Engineering 53, 1101–1126 (2002)

    Article  Google Scholar 

  31. Yamakawa, S., Shimada, K.: Fully-Automated Hex-Dominant Mesh Generation with Directionality Control via Packing Rectangular Solid Cells. International Journal for Numerical Methods in Engineering 57, 2099–2129 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Yamakawa, S., Shimada, K.: HEXHOOP: Modular Templates for Converting a Hex-dominant Mesh to an All-hex Mesh. In: Proceedings of 10th International Meshing Roundtable, pp. 235–246 (2001)

    Google Scholar 

  33. Yamakawa, S., Shimada, K.: Converting a Tetrahedral Mesh to a Prism-Tetrahedral Hybrid Mesh for FEM Accuracy and Efficiency. In: Proceedings of ACM Symposium on Solid and Physical Modeling 2008, pp. 287–294 (2008)

    Google Scholar 

  34. "Abaqus," Dassault Systemes, http://www.simulia.com

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yamakawa, S., Gentilini, I., Shimada, K. (2008). Subdivision Templates for Converting a Non-conformal Hex-Dominant Mesh to a Conformal Hex-Dominant Mesh without Pyramid Elements. In: Garimella, R.V. (eds) Proceedings of the 17th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87921-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87921-3_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87920-6

  • Online ISBN: 978-3-540-87921-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics