Skip to main content

Anisotropic Delaunay Mesh Adaptation for Unsteady Simulations

  • Conference paper

Summary

Anisotropic mesh adaptation is a key feature in many numerical simulations to capture the physical behavior of a complex phenomenon at a reasonable computational cost. It is a challenging problem, especially when dealing with time dependent and interface capturing or tracking problems. In this paper, we describe a local mesh adaptation method based on an extension of the Delaunay kernel for creating anisotropic mesh elements with respect to adequate metric tensors. In addition, we show that this approach can be successfully applied to deal with fluid-structure interaction problems where parts of the domain boundaries undergo large displacements. The accuracy and efficiency of the method is assessed on various numerical examples of complex three-dimensional simulations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alauzet, F., Loseille, A., Dervieux, A., Frey, P.: Multi-dimensional continuous metric for mesh adaptation. In: Proc. 15th Int. Meshing Roundtable, pp. 191–214 (2006)

    Google Scholar 

  2. Apel, T., Berzins, M., Jimack, P.K., Kunert, G., Plaks, A., Tsukerman, I., Walkley, M.: Mesh shape and anisotropic elements: Theory and practice. In: Whiteman, J.R. (ed.) The Mathematics of Finite Elements and Applications X, pp. 367–376. Elsevier, Oxford (2000)

    Chapter  Google Scholar 

  3. DAzevedo, E.F., Simpson, R.B.: On optimal triangular meshes for minimizing the gradient error. Numer. Math. 59, 321–348 (1991)

    Article  MathSciNet  Google Scholar 

  4. Babuška, I., Aziz, A.K.: On the angle condition in the finite element method. SIAM J. Numer. Anal. 13, 214–226 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baker, T.J.: Mesh Movement and Metamorphosis. Eng. Comput. 18(3), 188–198 (2002)

    Article  Google Scholar 

  6. Berzins, M.: A solution-based triangular and tetrahedral mesh quality indicator. SIAM J. Sci. Comput. 19, 2051–2060 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bossen, F.J., Heckbert, P.S.: A pliant method for anisotropic mesh generation. In: Proc. 5th Int. Meshing Roundtable, pp. 63–74 (1996)

    Google Scholar 

  8. Borouchaki, H., Hecht, F., Frey, P.: Mesh gradation control. Int. J. Numer. Methods Engng. 43(6), 1143–1165 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Castro-Diaz, M.J., Hecht, F., Mohammadi, B., Pironneau, O.: Anisotropic unstructured mesh adaption for flow simulations. Int. J. Numer. Meth. Fluids 25, 475–491 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    Book  MATH  Google Scholar 

  11. Chernikov, A., Crisochoides, N.: Three-dimensional semi-generalized point placement method for Delaunay mesh refinement. In: Proc. 16th Int. Meshing Roundtable, Seattle, pp. 25–44 (2007)

    Google Scholar 

  12. Dolejsi, V.: Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes. Computing and Visualisation in Science 1, 165–178 (1998)

    Article  MATH  Google Scholar 

  13. Dompierre, J., Vallet, M.-G., Bourgault, Y., Fortin, M., Habashi, W.G.: Anisotropic mesh adaptation: Towards user-indepedent, mesh-independent and solver-independent CFD. Part III: Unstructured meshes. Int. J. Numer. Meth. Fluids 39, 675–702 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ducrot, V., Frey, P.: Contrôle de l’approximation géométrique d’une interface par une métrique anisotrope. C.R. Acad. Sci. 345, Série I, 537–542 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Formaggia, L., Perotto, S.: New anisotropic a priori error estimates. Numer. Math. 89, 641–667 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Fortin, M.: Etude numérique d’estimations d’erreur a posteriori. REEF 9, 467–486 (2000)

    MATH  Google Scholar 

  17. Frey, P.: About surface remeshing. In: Proc. 9th Int. Meshing Roundtable, pp. 123–136 (2000)

    Google Scholar 

  18. Frey, P.J., George, P.L.: Mesh generation. Application to finite elements, 2nd edn. Wiley, Chichester (2008)

    MATH  Google Scholar 

  19. Frey, P.J., Alauzet, F.: Anisotropic mesh adaptation for CFD simulations. Comput. Methods Appl. Mech. Engrg. 194(48-49), 5068–5082 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. George, P.L.: Premières expériences de maillage automatique par une méthode de Delaunay anisotrope en trois dimensions, RT-0272, Inria (2002)

    Google Scholar 

  21. George, P.L., Borouchaki, H.: Delaunay triangulation and meshing. Applications to finite elements, Hermès Science, Paris (1998)

    Google Scholar 

  22. Gruau, C., Coupez, T.: 3d unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric. Comput. Methods Appl. Mech. Engrg. 194(48-49), 4951–4976 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Huang, W.: Metric tensors for anisotropic mesh generation. J. Comput. Phys. 204, 633–665 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jiao, X., Colombi, A., Ni, X., Hart, J.: Anisotropic mesh adaptation for evolving triangulated surfaces. In: Proc. 15th Int. Meshing Roundtable, pp. 173–190 (2006)

    Google Scholar 

  25. Kunert, G.: A local problem error estimator for anisotropic tetrahedral finite element meshes. SIAM J. Numer. Anal. 39, 668–689 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Labelle, F., Shewchuk, J.: Anisotropic Voronoi Diagrams and Guaranteed-Quality Anisotropic Mesh Generation. In: Proc. 19th Annual Symposium on Computational Geometry, pp. 191–200. ACM, San Diego (2003)

    Google Scholar 

  27. Löhner, R.: Regridding surface triangulations. J. Comput. Physics 26(1), 1–10 (1996)

    Article  Google Scholar 

  28. Nkonga, B.: On the conservative and accurate CFD approximations for moving meshes and moving boundaries. Comput. Methods Appl. Mech. Engrg. 190, 1801–1825 (2000)

    Article  MATH  Google Scholar 

  29. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces, vol. 153. Springer, New York (2002)

    Google Scholar 

  30. Peraire, J., Vahdati, M., Morgan, K., Zienkiewicz, O.C.: Adaptive remeshing for compressible flow computations. J. Comput. Phys. 72, 449–466 (1997)

    Article  Google Scholar 

  31. Picasso, M.: An anisotropic error indicator based on Zienkiewicz-Zhu error estimator: Application to elliptic and parabolic problems. SIAM J. Sci. Comput. 24, 1328–1355 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Remacle, J., Li, X., Shephard, M.S., Flaherty, J.E.: Anisotropic adaptive simulation of transient flows using discontinuous Galerkin methods. Int. J. Numer. Meth. Engr. 62(7), 899–923 (2003)

    Article  MathSciNet  Google Scholar 

  33. Rippa, S.: Long and thin triangles can be good for linear interpolation. SIAM J. Numer. Anal. 29, 257–270 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shewchuk, J.R.: What Is a Good Linear Element? Interpolation, Conditioning, and Quality Measures. In: 11th Int. Meshing Roundtable, pp. 115–126 (2002)

    Google Scholar 

  35. Zlámal, M.: On the finite element method. Numer. Math. 12, 394–409 (1968)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dobrzynski, C., Frey, P. (2008). Anisotropic Delaunay Mesh Adaptation for Unsteady Simulations. In: Garimella, R.V. (eds) Proceedings of the 17th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87921-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87921-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87920-6

  • Online ISBN: 978-3-540-87921-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics