Skip to main content

Conotoxins: Molecular and Therapeutic Targets

  • Chapter
Marine Toxins as Research Tools

Part of the book series: Progress in Molecular and Subcellular Biology ((MMB,volume 46))

Abstract

Marine molluscs known as cone snails produce beautiful shells and a complex array of over 50,000 venom peptides evolved for prey capture and defence. Many of these peptides selectively modulate ion channels and transporters, making them a valuable source of new ligands for studying the role these targets play in normal and disease physiology. A number of conopeptides reduce pain in animal models, and several are now in pre-clinical and clinical development for the treatment of severe pain often associated with diseases such as cancer. Less than 1% of cone snail venom peptides are pharmacologically characterised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams D, Alewood P, Craik D, Drinkwater R, Lewis RJ (1999) Conotoxins and their potential pharmaceutical applications. Drug Discov Res 46:219–234.

    CAS  Google Scholar 

  • Allen JW, Hofer K, McCumber D, Wagstaff JD, Layer RT, McCabe RT, Yaksh (2007) An assessment of the antinociceptive efficacy of intrathecal and epidural contulakin-G in rats and dogs. Anesth Analg 104:1505–1513.

    Article  CAS  Google Scholar 

  • Al-Sabi A, Lennartz D, Ferber M, Gulyas J, Rivier JE, Olivera BM, Carlomagno T, Terlau H (2004) KM-Conotoxin RIIIK, structural and functional novelty in a K+ channel antagonist. Biochemistry 43:8625–8635.

    Article  CAS  Google Scholar 

  • Barbier J, Lamthanh H, Le Gall F, Favreau P, Benoit E, Chen H, Gilles N, Ilan N, Heinemann SH, Gordon D, Menez A, Molgo J (2004) A δ-conotoxin from Conus ermineus venom inhibits inactivation in vertebrate neuronal Na+ channels but not in skeletal and cardiac muscles. J Biol Chem 279:4680–4685.

    Article  CAS  Google Scholar 

  • Bingham J-P, Jones A, Lewis RJ, Andrews PR, Alewood PF (1996) Conus venom peptides (conopeptides): inter-species, intra-species and within individual variation revealed by ionspray mass spectrometry. In: Lazarovici P, Spiro M, Zlotkin E (eds) Biochemical aspects of marine pharmacology. Alaken, Inc., Fort Collins, CO, pp 13–27.

    Google Scholar 

  • Bulaj G, Zhang MM, Green BR, Fiedler B, Layer RT, Wei S, Nielsen JS, Low SJ, Klein BD, Wagstaff JD, Chicoine L, Harty TP, Terlau H, Yoshikami D, Olivera BM (2006) Synthetic μO-conotoxin MrVIB blocks TTX-resistant sodium channel NaV1.8 and has a long-lasting analgesic activity. Biochemistry 45:7404–7414.

    Article  CAS  Google Scholar 

  • Catterall WA, Goldin AL, Waxman SG (2005a) International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev 57:397–409.

    CAS  Google Scholar 

  • Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005b) International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57:411–425.

    Article  CAS  Google Scholar 

  • Chen Z, Rogge G, Hague C, Alewood D, Colless B, Lewis RJ, Minneman KP (2004) Subtype-selective noncompetitive or competitive inhibition of human α1-adrenergic receptors by p-TIA. J Biol Chem 279:35326–35333.

    Article  CAS  Google Scholar 

  • Craig AG, Zafaralla G, Cruz LJ, Santos AD, Hillyard DR, Dykert J, Rivier JE, Gray WR, Imperial J, DelaCruz RG, Sporning A, Terlau H, West PJ, Yoshikami D, Olivera BM (1998) An O-glycosylated neuroexcitatory Conus peptide. Biochemistry 37:16019–16025.

    Article  CAS  Google Scholar 

  • Craig AG, Norberg T, Griffin D, Hoeger C, Akhtar M, Schmidt K, Low W, Dykert J, Richelson E, Navarro V, Mazella J, Watkins M, Hillyard D, Imperial J, Cruz LJ, Olivera BM (1999) Contulakin-G, an O-glycosylated invertebrate neurotensin. J Biol Chem 274: 13752–13729.

    Article  CAS  Google Scholar 

  • Daly NL, Ekberg JA, Thomas L, Adams DJ, Lewis RJ, Craik DJ (2004) Structures of μO-conotoxins from Conus marmoreus. Inhibitors of tetrodotoxin (TTX)-sensitive and TTX-resistant sodium channels in mammalian sensory neurons. J Biol Chem 279:25774–25782.

    Article  CAS  Google Scholar 

  • Donevan SD, McCabe RT (2000) Conantokin G is an NR2B-selective competitive antagonist of N-methyl-D-aspartate receptors. Mol Pharmacol 58:614–623.

    CAS  Google Scholar 

  • Drew LJ, Rugiero F, Cesare P, Gale JE, Abrahamsen B, Bowden S, Heinzmann S, Robinson M, Brust A, Colless B, Lewis RJ, Wood JN (2007) High-threshold mechanosensitive ion channels blocked by a novel conopeptide mediate pressure-evoked pain. PLoS ONE 2:e515.

    Article  Google Scholar 

  • Dutertre S, Lewis RJ (2006) Toxin insights into nicotinic acetylcholine receptors. Biochem Pharmacol 72:661–670.

    Article  CAS  Google Scholar 

  • Dutertre S, Lumsden N, Alewood PF, Lewis RJ (2006) Isolation and characterisation of Conomap-Vt, a D-amino acid containing excitatory peptide from the venom of a vermivorous cone snail. FEBS Lett 580:3860–3866.

    Article  CAS  Google Scholar 

  • Dutertre S, Ulens C, Büttner R, Fish A, van Elk R, Kendel Y, Hopping G, Alewood PF, Schroeder C, Nicke A, Smit AB, Sixma TK, Lewis RJ (2007) AChBP-targeted α-conotoxin correlates distinct binding orientations with nAChR subtype selectivity. EMBO J 26:3858–3867.

    Article  CAS  Google Scholar 

  • Dutertre S, Croker D, Daly NL, Andersson A, Muttenthaler M, Lumdsen NG, Craik DJ, Alewood PF, Guillon G, Lewis RJ (2008) Conopressin-T from Conus tulipa reveals an antagonist switch in vasopressin-like peptides. J Biol Chem 83:7100–7108.

    Article  Google Scholar 

  • Ekberg J, Jayamanne A, Vaughan CW, Aslan S, Thomas L, Mould J, Drinkwater R, Baker MD, Abrahamsen B, Wood JN, Adams DJ, Christie MJ, Lewis RJ (2006) μO-conotoxin MrVIB selectively blocks Na 1.8 sensory neuron specific sodium channels and chronic pain without motor deficits. Proc Natl Acad Sci USA 103:17030–17035.

    Article  CAS  Google Scholar 

  • Fainzilber M, Gordon D, Hasson A, Spira ME, Zlotkin E (1991) Mollusc-specific toxins from the venom of Conus textile neovicarius. Eur J Biochem 202:589–595.

    Article  CAS  Google Scholar 

  • Fainzilber M, Kofman O, Zlotkin E, Gordon D (1994) A new neurotoxin receptor site on sodium channels is identified by a conotoxin that affects sodium channel inactivation in molluscs and acts as an antagonist in rat brain. J Biol Chem 269:2574–2580.

    CAS  Google Scholar 

  • Fainzilber M, van der Schors R, Lodder JC, Li KW, Geraerts WP, Kits KS (1995) New sodium channel-blocking conotoxins also affect calcium currents in Lymnaea neurons. Biochemistry 34:5364–5371.

    Article  CAS  Google Scholar 

  • Fan CX, Chen XK, Zhang C, Wang LX, Duan KL, He LL, Cao Y, Liu SY, Zhong MN, Ulens C, Tytgat J, Chen JS, Chi CW, Zhou Z (2003) A novel conotoxin from Conus betulinus, K-BtX, unique in cysteine pattern and in function as a specific BK channel modulator. J Biol Chem 278:12624–12633.

    Article  CAS  Google Scholar 

  • Ferber M, Sporning A, Jeserich G, DeLaCruz R, Watkins M, Olivera BM, Terlau H (2003) A novel Conus peptide ligand for K+ channels. J Biol Chem 278:2177–2183.

    Article  CAS  Google Scholar 

  • Hillyard DR, Olivera BM, Woodward S, Corpuz GP, Gray WR, Ramilo CA, Cruz LJ (1989) A mol-luscivorous Conus toxin: conserved frameworks in conotoxins. Biochemistry 28:358–361.

    Article  CAS  Google Scholar 

  • Jimenez EC, Donevan S, Walker C, Zhou LM, Nielsen J, Cruz LJ, Armstrong H, White HS, Olivera BM (2002) Conantokin-L, a new NMDA receptor antagonist: determinants for anticonvulsant potency. Epilepsy Res 51:73–80.

    Article  CAS  Google Scholar 

  • Kamikihara SY, Mueller A, Lima V, Silva AR, da Costa IB, Buratini J Jr, Pupo AS (2005) Differential distribution of functional α1-adrenergic receptor subtypes along the rat tail artery. J Pharmacol Exp Ther 314:753–761.

    Article  CAS  Google Scholar 

  • Kohno T, Sasaki T, Kobayashi K, Fainzilber M, Sato K (2002) Three-dimensional solution structure of the sodium channel agonist/antagonist δ-conotoxin TxVIA. J Biol Chem 277:36387–36391.

    Article  CAS  Google Scholar 

  • Lancelin JM, Kohda D, Tate S, Yanagawa Y, Abe T, Satake M, Inagaki F (1991) Tertiary structure of conotoxin GIIIA in aqueous solution. Biochemistry 30:6908–6916.

    Article  CAS  Google Scholar 

  • Layer RT, Wagstaff JD, White HS (2004) Conantokins: peptide antagonists of NMDA receptors. Curr Med Chem 11:3073–3084.

    CAS  Google Scholar 

  • Lewis RJ, Garcia ML (2003) Therapeutic potential of venom peptides. Nat Rev Drug Discov 2:790–802.

    Article  CAS  Google Scholar 

  • Lewis RJ, Nielsen KJ, Craik DJ, Loughnan ML, Adams DA, Sharpe IA, Luchian T, Adams DJ, Bond T, Thomas L, Jones A, Matheson JL, Drinkwater R, Andrews PR, Alewood PF (2000) Novel ω-conotoxins from Conus catus discriminate among neuronal calcium channel subtypes. J Biol Chem 275:35335–35344.

    Article  CAS  Google Scholar 

  • Lewis RJ, Schroeder CI, Ekberg J, Nielsen KJ, Loughnan M, Thomas L, Adams DA, Drinkwater R, Adams DJ, Alewood PF (2007) Isolation and structure-activity of μ-conotoxin TIIIA, a potent inhibitor of TTX-sensitive voltage-gated sodium channels. Mol Pharmacol 71:676–685.

    Article  CAS  Google Scholar 

  • Loughnan M, Nicke A, Jones A, Schroeder CI, Nevin ST, Adams DJ, Alewood DJ, Lewis RJ (2006) Identification of a novel class of nicotinic receptor antagonists dimeric conotoxins VxXIIA, VxXIIB and VxXIIC from Conus vexillum. J Biol Chem 281, 24745–24755.

    Article  CAS  Google Scholar 

  • Lima V, Mueller A, Kamikihara SY, Raymundi V, Alewood D, Lewis RJ, Chen Z, Minneman KP, Pupo AS (2005) Differential antagonism by conotoxin p-TIA of contractions mediated by distinct α1-adrenoceptor subtypes in rat vas deferens, spleen and aorta. Eur J Pharmacol 508:183–192.

    Article  CAS  Google Scholar 

  • Lubbers NL, Campbell TJ, Polakowski JS, Bulaj G, Layer RT, Moore J, Gross GJ, Cox BF (2005) Postischemic administration of CGX-1051, a peptide from cone snail venom, reduces infarct size in both rat and dog models of myocardial ischemia and reperfusion. J Cardiovasc Pharmacol 46:141–146.

    Article  CAS  Google Scholar 

  • Malmberg AB, Yaksh TL (1995) Effect of continuous intrathecal infusion of ω-conopeptides, N-type calcium-channel blockers, on behavior and antinociception in the formalin and hotplate tests in rats. Pain 60:83–90.

    Article  CAS  Google Scholar 

  • Malmberg AB, Gilbert H, McCabe RT, Basbaum AI (2003) Powerful antinociceptive effects of the cone snail venom-derived subtype-selective NMDA receptor antagonists conantokins G and T. Pain 101:109–116.

    Article  CAS  Google Scholar 

  • McIntosh JM, Hasson A, Spira ME, Gray WR, Li W, Marsh M, Hillyard DR, Olivera BM (1995) A new family of conotoxins that blocks voltage-gated sodium channels. J Biol Chem 270:16796–16802.

    Article  CAS  Google Scholar 

  • Milne TJ, Abbenante G, Tyndall JD, Halliday J, Lewis RJ (2003) Isolation and characterization of a cone snail protease with homology to CRISP proteins of the pathogenesis-related protein superfamily. J Biol Chem 278:31105–31110.

    Article  CAS  Google Scholar 

  • Mould J, Yasuda T, Schroeder CI, Beedle AM, Clinton J, Doering CJ, Zamponi GW, Adams DJ, Lewis RJ (2004) The α2δ auxiliary subunit reduces affinity of ω-conotoxins for recombinant N-type calcium channels J Biol Chem 279:34705–34714.

    Article  CAS  Google Scholar 

  • Nevin ST, Clark RJ, Klimis H, Christie MJ, Craik DJ, Adams DJ (2007) Are α9α10 nicotinic acetylcholine receptors a pain target for cx-conotoxins? Mol Pharmacol 72:1406–1410.

    Article  CAS  Google Scholar 

  • Nicke A, Wonnacott S, Lewis RJ (2004) α-Conotoxins as tools for the elucidation of structure and function of neuronal nicotinic acetylcholine receptor subtypes. Eur J Biochem 271:2305–2319.

    Article  CAS  Google Scholar 

  • Nielsen CK, Lewis RJ, Alewood D, Drinkwater R, Palant E, Patterson M, Yaksh TL, McCumber D, Smith MT (2005) Anti-allodynic efficacy of the χ-conopeptide, Xen2174, in rats with neuropathic pain. Pain 118:112–124.

    Article  CAS  Google Scholar 

  • Nielsen K, Schroeder T, Lewis R (2000) Structure-activity relationships of ω-conotoxins at N-type voltage-sensitive calcium channels. J Mol Recognit 13:55–70.

    Article  CAS  Google Scholar 

  • Nielsen KJ, Skjaerbaek N, Dooley M, Adams DA, Mortensen M, Dodd PR, Craik DJ, Alewood PF, Lewis RJ (1999) Structure-activity studies of conantokins as human N-methyl-D-aspartate receptor modulators. J Med Chem 42:415–426.

    Article  CAS  Google Scholar 

  • Nielsen KJ, Watson M, Adams DJ, Hammarstrom AK, Gage PW, Hill JM, Craik DJ, Thomas L, Adams D, Alewood PF, Lewis RJ (2002) Solution structure of μ-conotoxin PIIIA, a preferential inhibitor of persistent tetrodotoxin-sensitive sodium channels. J Biol Chem 277: 27247–27255.

    Article  CAS  Google Scholar 

  • Nilsson KP, Lovelace ES, Caesar CE, Tynngard N, Alewood PF, Johansson HM, Sharpe IA, Lewis RJ, Daly NL, Craik DJ (2005) Solution structure of χ-conopeptide MrIA, a modulator of the human norepinephrine transporter. Biopolymers 80:815–823.

    Article  CAS  Google Scholar 

  • Paczkowski FA, Sharpe IA, Dutertre S, Lewis RJ (2007) χ-Conopeptide and tricyclic antidepressant interactions at the norepinephrine transporter define a new transporter model. J Biol Chem 282:17837–17844.

    Article  CAS  Google Scholar 

  • Ragnarsson L, Mortensen M, Dodd PR, Lewis RJ (2002) Spermine modulation of the glutamate (NMDA) receptor is differentially responsive to conantokins in normal and Alzheimer's disease human cerebral cortex. J Neurochem 81:765–79.

    Article  CAS  Google Scholar 

  • Ragnarsson L, Yasuda T, Lewis RJ, Dodd PR, Adams DJ (2006) NMDA receptor subunit-dependent modulation by conantokin-G and Ala7-conantokin-G. J Neurochem 96:283–291.

    Article  CAS  Google Scholar 

  • Sandall DW, Satkunanathan N, Keays DA, Polidano MA, Liping X, Pham V, Down JG, Khalil Z, Livett BG, Gayler KR (2003) A novel α-conotoxin identified by gene sequencing is active in suppressing the vascular response to selective stimulation of sensory nerves in vivo. Biochemistry 42:6904–6911.

    Article  CAS  Google Scholar 

  • Scanlon MJ, Naranjo D, Thomas L, Alewood PF, Lewis RJ, Craik DJ (1997) Solution structure and proposed binding mechanism of a novel potassium channel toxin Κ-conotoxin PVIIA. Structure 5:1585–1597.

    Article  CAS  Google Scholar 

  • Schroeder CI, Smythe ML, Lewis RJ (2004) Development of small molecules that mimic the binding of ω-conotoxins at the N-type voltage-gated calcium channel. Mol Diversity 8:127–134.

    Article  CAS  Google Scholar 

  • Sharpe IA, Gehrmann J, Loughnan ML, Thomas L, Adams DA, Atkins A, Palant E, Craik DJ, Adams DF, Alewood PF, Lewis RJ (2001) Two new classes of conopeptides inhibit the α1-adrenoceptor and noradrenaline transporter. Nat Neurosci 4:902–907.

    Article  CAS  Google Scholar 

  • Sharpe IA, Thomas L, Loughnan M, Motin L, Palant E, Croker DE, Alewood D, Chen S, Graham RM, Alewood PF, Adams DJ, Lewis RJ (2003) Allosteric α1-adrenoreceptor antagonism by the conopeptide ρ-TIA. J Biol Chem 278:34451–34457.

    Article  CAS  Google Scholar 

  • Shon KJ, Olivera BM, Watkins M, Jacobsen RB, Gray WR, Floresca CZ, Cruz LJ, Hillyard DR, Brink A, Terlau H, Yoshikami D (1998a) μ-Conotoxin PIIIA, a new peptide for discriminating among tetrodotoxin-sensitive Na channel subtypes. J Neurosci 18:4473–81.

    CAS  Google Scholar 

  • Shon KJ, Stocker M, Terlau H, Stuhmer W, Jacobsen R, Walker C, Grilley M, Watkins M, Hillyard DR, Gray WR, Olivera BM (1998b) κ-Conotoxin PVIIA is a peptide inhibiting the shaker K+ channel. J Biol Chem 273:33–38.

    Article  CAS  Google Scholar 

  • Smith M., Cabot PJ, Ross FB, Robertson AD, Lewis RJ (2002) The novel N-type calcium channel blocker, AM336, produces potent dose-dependent antinociception after intrathecal dosing in rats and inhibits substance P release in rat spinal cord slices. Pain 96:119–127.

    Article  CAS  Google Scholar 

  • Teichert RW, Jacobsen R, Terlau H, Yoshikami D, Olivera BM (2007) Discovery and characterization of the short κA-conotoxins: a novel subfamily of excitatory conotoxins. Toxicon 49:318–328.

    Article  CAS  Google Scholar 

  • Terlau H, Shon KJ, Grilley M, Stocker M, Stuhmer W, Olivera BM (1996) Strategy for rapid immobilization of prey by a fish-hunting marine snail. Nature 381:148–151.

    Article  CAS  Google Scholar 

  • Terlau H, Boccaccio A, Olivera BM, Conti F (1999) The block of Shaker K+ channels by Ω-conotoxin PVIIA is state dependent. J Gen Physiol 114:125–140.

    Article  CAS  Google Scholar 

  • Vincler M, Wittenauer S, Parker R, Ellison M, Olivera BM, McIntosh JM (2006) Molecular mechanism for analgesia involving specific antagonism of α9α10 nicotinic acetylcholine receptors. Proc Natl Acad Sci USA 103:17880–17884.

    Article  CAS  Google Scholar 

  • Volpon L, Lamthanh H, Barbier J, Gilles N, Molgo J, Menez A, Lancelin JM (2004) NMR solution structures of δ-conotoxin EVIA from Conus ermineus that selectively acts on vertebrate neuronal Na+ channels. J Biol Chem 279:21356–21366.

    Article  CAS  Google Scholar 

  • Wood JN, Boorman J (2005) Voltage-gated sodium channel blockers; target validation and therapeutic potential. Curr Topics Med Chem 5:529–537.

    Article  CAS  Google Scholar 

  • Zhang MM, Green BR, Catlin P, Fiedler B, Azam L, Chadwick A, Terlau H, McArthur JR, French RJ, Gulyas J, Rivier JE, Smith BJ, Norton RS, Olivera BM, Yoshikami D, Bulaj G (2007) Structure/function characterization of μ-conotoxin KIIIA, an analgesic, nearly irreversible blocker of neuronal mammalian sodium channels. J Biol Chem 282:30699–30706.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lewis, R.J. (2009). Conotoxins: Molecular and Therapeutic Targets. In: Fusetani, N., Kem, W. (eds) Marine Toxins as Research Tools. Progress in Molecular and Subcellular Biology, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87895-7_2

Download citation

Publish with us

Policies and ethics