Skip to main content

Propositional Dynamic Logic for Recursive Procedures

  • Conference paper
Verified Software: Theories, Tools, Experiments (VSTTE 2008)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5295))

Abstract

We present a simple and natural deductive formalism μPDL for propositional dynamic logic for recursive procedures, including simultaneous recursion. Though PDL with recursive programs is known to be highly undecidable, natural deductive formalisms for it are of substantial interest, because they distill the essential logical components of recursive procedures. We also show that Pratt-Kozen’s μ-Calculus, in which fixpoints are taken over formulas rather than programs, is interpretable in μ PDL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gorelick, G.A.: A complete axiomatic system for proving assertions about recursive and nonrecursive programs. Technical Report TR-75, Deptment of Computer Science, University of Toronto (1975)

    Google Scholar 

  2. Harel, D.: First-Order Dynamic Logic. LNCS, vol. 68. Springer, Berlin (1979)

    MATH  Google Scholar 

  3. Harel, D.: Recursion in logics of programs. In: POPL 1979: Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pp. 81–92. ACM, New York (1979)

    Chapter  Google Scholar 

  4. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  5. Harel, D., Pnueli, A., Stavi, J.: Propositional dynamic logics of nonregular programs. J. Comput. Sys. Sci. 25, 222–243 (1983)

    Article  MathSciNet  Google Scholar 

  6. Harel, D., Puneli, A., Stavi, J.: A complete axiomatic system for proving deductions about recursive programs. In: Proceedings of the ninth annual ACM symposium on Theory of computing, pp. 249–260 (1977)

    Google Scholar 

  7. Harel, D., Singerman, E.: More on nonregular PDL: finite models and fibonacci-like programs. Inf. Comput. 128(2), 109–118 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kozen, D.: Results on the propositional mu-calculus. Theoretical Computer Science 27, 333–354 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lange, M., Somla, R.: Propositional dynamic logic of context-free programs and fixpoint logic with chop. Inf. Process. Lett. 100(2), 72–75 (2006)

    Article  MathSciNet  Google Scholar 

  10. Leivant, D.: Propositional dynamic logic with program quantifiers. Electronic notes in Theoretical Computer Science (to appear, 2008)

    Google Scholar 

  11. Löding, C., Lutz, C., Serre, O.: Propositional dynamic logic with recursive programs. Journal of Logic and Algebraic Programming 73, 51–69 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Nipkow, T.: Hoare logics for recursive procedures and unbounded nondeterminism. In: Bradfield, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS, vol. 2471. pp. 103–119. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Nipkow, T.: Hoare logics for recursive procedures and unbounded nondeterminism. In: Bradfield, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS, vol. 2471. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Pratt, V.: A decidable mu-calculus (preliminary report). In: Proceedings of the twenty-second IEEE Symposium on Foundations of Computer Science, pp. 421–427. Computer Society press, Los Angles (1981)

    Google Scholar 

  15. von Oheimb, D.: Hoare logic for mutual recursion and local variables. In: Pandu Rangan, C., Raman, V., Ramanujam, R. (eds.) FST TCS 1999. LNCS, vol. 1738. pp. 168–180. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Natarajan Shankar Jim Woodcock

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leivant, D. (2008). Propositional Dynamic Logic for Recursive Procedures. In: Shankar, N., Woodcock, J. (eds) Verified Software: Theories, Tools, Experiments. VSTTE 2008. Lecture Notes in Computer Science, vol 5295. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87873-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87873-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87872-8

  • Online ISBN: 978-3-540-87873-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics