Basis-Independent Polynomial Division Algorithm Applied to Division in Lagrange and Bernstein Basis

  • Manfred Minimair
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5081)


Division algorithms for univariate polynomials represented with respect to Lagrange and Bernstein basis are developed. These algorithms are obtained by abstracting from the classical polynomial division algorithm for polynomials represented with respect to the usual power basis. It is shown that these algorithms are quadratic in the degrees of their inputs, as in the power basis case.


polynomial division Lagrange basis Bernstein basis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amiraslani, A.: Dividing polynomials when you only know their values. In: Gonzalez-Vega, L., Recio, T. (eds.) Proceedings of Encuentros de Álgebra Computacional y Aplicaciones (EACA) 2004, pp. 5–10 (2004),
  2. 2.
    Amiraslani, A.: New Algorithms for Matrices, Polynomials and Matrix Polynomials. PhD thesis, University of Western Ontario, London, Ontario, Canada (2006)Google Scholar
  3. 3.
    Aruliah, D.A., Corless, R.M., Gonzalez-Vega, L., Shakoori, A.: Geometric applications of the bezout matrix in the lagrange basis. In: SNC 2007: Proceedings of the 2007 international workshop on Symbolic-numeric computation, pp. 55–64. ACM, New York (2007)Google Scholar
  4. 4.
    Aruliah, D.A., Corless, R.M., Shakoori, A., Gonzalez-Vega, L., Rua, I.F.: Computing the topology of a real algebraic plane curve whose equation is not directly available. In: SNC 2007: Proceedings of the 2007 international workshop on Symbolic-numeric computation, pp. 46–54. ACM Press, New York (2007)Google Scholar
  5. 5.
    Barnett, S.: Division of generalized polynomials using the comrade matrix. Linear Algebra Appl. 60, 159–175 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Barnett, S.: Euclidean remainders for generalized polynomials. Linear Algebra Appl. 99, 111–122 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Barnett, S.: Polynomials and linear control systems. Monographs and Textbooks in Pure and Applied Mathematics, vol. 77. Marcel Dekker Inc., New York (1983)zbMATHGoogle Scholar
  8. 8.
    Bini, D.A., Gemignani, L., Winkler, J.R.: Structured matrix methods for CAGD: an application to computing the resultant of polynomials in the Bernstein basis. Numer. Linear Algebra Appl. 12(8), 685–698 (2005)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Bostan, A., Schost, É.: Polynomial evaluation and interpolation on special sets of points. J. Complexity 21(4), 420–446 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Cheng, H., Labahn, G.: On computing polynomial GCDs in alternate bases. In: ISSAC 2006, pp. 47–54. ACM, New York (2006)CrossRefGoogle Scholar
  11. 11.
    Corless, R.: Generalized companion matrices in the lagrange basis. In: Gonzalez-Vega, L., Recio, T. (eds.) Proceedings of Encuentros de Álgebra Computacional y Aplicaciones (EACA 2004), pp. 317–322 (2004),
  12. 12.
    Diaz-Toca, G.M., Gonzalez-Vega, L.: Barnett’s theorems about the greatest common divisor of several univariate polynomials through Bezout-like matrices. J. Symbolic Comput. 34(1), 59–81 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Farouki, R.T., Goodman, T.N.T.: On the optimal stability of the Bernstein basis. Math. Comp. 65(216), 1553–1566 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Gemignani, L.: Manipulating polynomials in generalized form. Technical Report TR-96-14, Università di Pisa, Departmento di Informatica, Corso Italia 40, 56125 Pisa, Italy (December 1996)Google Scholar
  15. 15.
    Goldman, R.: Pyramid Algorithms: A Dynamic Programming Approach to Curves and Surfaces for Geometric Modeling, 1st edn. The Morgan Kaufmann Series in Computer Graphics. Morgan Kaufmann, San Francisco (2002)Google Scholar
  16. 16.
    Mani, V., Hartwig, R.E.: Generalized polynomial bases and the Bezoutian. Linear Algebra Appl. 251, 293–320 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Maroulas, J., Barnett, S.: Greatest common divisor of generalized polynomial and polynomial matrices. Linear Algebra Appl. 22, 195–210 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Stetter, H.J.: Numerical polynomial algebra. Society for Industrial and Applied Mathematics. SIAM, Philadelphia (2004)zbMATHGoogle Scholar
  19. 19.
    Tsai, Y.-F., Farouki, R.T.: Algorithm 812: BPOLY: An object-oriented library of numerical algorithms for polynomials in Bernstein form. ACM Transactions on Mathematical Software 27(2), 267–296 (2001)zbMATHCrossRefGoogle Scholar
  20. 20.
    Vries-Baayens, A.: CAD product data exchange: conversions for curves and surfaces. PhD thesis, Delft University (1991)Google Scholar
  21. 21.
    Winkler, F.: Polynomial algorithms in computer algebra. In: Texts and monographs in symbolic computation. Springer, Heidelberg (1996)Google Scholar
  22. 22.
    Winkler, J.R.: A resultant matrix for scaled Bernstein polynomials. Linear Algebra Appl. 319(1-3), 179–191 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Winkler, J.R.: Properties of the companion matrix resultant for Bernstein polynomials. In: Uncertainty in geometric computations. Kluwer Internat. Ser. Engrg. Comput. Sci., vol. 704, pp. 185–198. Kluwer Acad. Publ., Boston (2002)Google Scholar
  24. 24.
    Winkler, J.R.: A companion matrix resultant for Bernstein polynomials. Linear Algebra Appl. 362, 153–175 (2003)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Manfred Minimair
    • 1
  1. 1.Department of Mathematics and Computer ScienceSeton Hall UniversityNew JerseyUSA

Personalised recommendations