Skip to main content

The Nearest Real Polynomial with a Real Multiple Zero in a Given Real Interval

  • Conference paper
Book cover Computer Mathematics (ASCM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5081))

Included in the following conference series:

  • 1333 Accesses

Abstract

Given f ∈ ℝ[x] and a closed real interval I, we provide a rigorous method for finding a nearest polynomial with a real multiple zero in I, that is, \(\tilde{f}\in\mathbb{R}[x]\) such that \(\tilde{f}\) has a multiple zero in I and \(\|f - \tilde{f}\|_\infty\), the infinity norm of the vector of coefficients of , is minimal. First, we prove that if a nearest polynomial exists, there is a nearest polynomial \(\tilde{g}\in\mathbb{R}[x]\) such that the absolute value of every coefficient of \(f-\tilde{g}\) is \(\|f - \tilde{f}\|_\infty\) with at most one exceptional coefficient. Using this property, we construct h ∈ ℝ[x] such that a zero of h is a real multiple zero α ∈ I of \(\tilde{g}\). Furthermore, we give a rational function whose value at α is \(\|f - \tilde{f}\|_\infty\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hitz, M.A., Kaltofen, E.: The Kharitonov theorem and its applications in symbolic mathematical computation. In: Proc. Workshop on Symbolic-Numeric Algebra for Polynomials (SNAP 1996), pp. 20–21 (1996)

    Google Scholar 

  2. Kharitonov, V.L.: Asymptotic stability of an equilibrium position of a family of systems of linear differential equations. Differentsial’nye Uravneniya 14(11), 2086–2088 (1978)

    MATH  MathSciNet  Google Scholar 

  3. Bartlett, A.C., Hollot, C.V., Lin, H.: Root location of an entire polytope of polynomials: It suffices to check the edges. Mathematics of Controls, Signals and Systems 1, 61–71 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  4. Qiu, L., Davison, E.J.: A simple procedure for the exact stability robustness computation of polynomials with affine coefficient perturbations. Systems and Control Letters 13, 413–420 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. Rantzer, A.: Stability conditions for polytopes of polynomials. IEEE Trans. Auto. Control 37(1), 79–89 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bhattacharyya, S.P., Chapellat, H., Keel, L.H.: Robust Control, The Parametric Approach. Prentice-Hall, Englewood Cliffs (1995)

    MATH  Google Scholar 

  7. Cheney, E.W.: Introduction to Approximation Theory, 2nd edn. Amer. Math. Soc. (1999)

    Google Scholar 

  8. Remez, E.Y.: General Computational Methods of Tchebycheff Approximation. Kiev (1957) (Atomic Energy Commission Translation 4491, 1–85)

    Google Scholar 

  9. Luenberger, D.G.: Optimization by Vector Space Methods. John Wiley & Sons Inc., Chichester (1969)

    MATH  Google Scholar 

  10. Graillat, S.: A note on a nearest polynomial with a given root. ACM SIGSAM Bulletin 39(2), 53–60 (2005)

    Article  MathSciNet  Google Scholar 

  11. Hitz, M.A., Kaltofen, E.: Efficient algorithms for computing the nearest polynomial with constrained roots. In: Proc. 1998 International Symposium on Symbolic and Algebraic Computation (ISSAC 1998), pp. 236–243 (1998)

    Google Scholar 

  12. Hitz, M.A., Kaltofen, E., Lakshman, Y.N.: Efficient algorithms for computing the nearest polynomial with a real root and related problems. In: Proc. 1999 International Symposium on Symbolic and Algebraic Computation (ISSAC 1999), pp. 205–212 (1999)

    Google Scholar 

  13. Kaltofen, E.: Efficient algorithms for computing the nearest polynomial with parametrically constrained roots and factors. In: Lecture at the Workshop on Symbolic and Numerical Scientific Computation (SNSC 1999) (1999)

    Google Scholar 

  14. Mosier, R.G.: Root neighborhoods of a polynomial. Math. Comp. 47(175), 265–273 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  15. Rezvani, N., Corless, R.C.: The nearest polynomial with a given zero, revisited. ACM SIGSAM Bulletin 39(3), 73–79 (2005)

    Article  MathSciNet  Google Scholar 

  16. Sekigawa, H.: The nearest polynomial with a zero in a given domain. In: Proc. 2007 International Workshop on Symbolic-Numeric Computation (SNC 2007), pp. 190–196 (2007)

    Google Scholar 

  17. Sekigawa, H., Shirayanagi, K.: Locating real multiple zeros of a real interval polynomial. In: Proc. 2006 International Symposium on Symbolic and Algebraic Computation (ISSAC 2006), pp. 310–317 (2006)

    Google Scholar 

  18. Sekigawa, H., Shirayanagi, K.: On the location of zeros of an interval polynomial. In: Wang, D., Zhi, L. (eds.) Symbolic-Numeric Computation, pp. 167–184. Birkhäuser, Basel (2007)

    Chapter  Google Scholar 

  19. Stetter, H.J.: The nearest polynomial with a given zero, and similar problems. ACM SIGSAM Bulletin 33(4), 2–4 (1999)

    Article  MATH  Google Scholar 

  20. Zhi, L., Wu, W.: Nearest singular polynomials. J. Symbolic Computation 26(6), 667–675 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Karow, M.: Geometry of spectral value sets. PhD thesis, Universität Bremen (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Deepak Kapur

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sekigawa, H. (2008). The Nearest Real Polynomial with a Real Multiple Zero in a Given Real Interval. In: Kapur, D. (eds) Computer Mathematics. ASCM 2007. Lecture Notes in Computer Science(), vol 5081. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87827-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87827-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87826-1

  • Online ISBN: 978-3-540-87827-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics