On the Computation of Elimination Ideals of Boolean Polynomial Rings

  • Yosuke Sato
  • Akira Nagai
  • Shutaro Inoue
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5081)


In order to compute an eliminate portion of a given polynomial ideal by a Gröbner basis computation, we usually need to compute a Gröbner basis of the whole ideal with respect to some proper term order. In a boolean polynomial ring, we show that we can compute an eliminate portion by computing Gröbner bases in the boolean polynomial ring with the same coefficient ring that has the only variables which we want to eliminate. We also check the efficiency of our method through our implementation.


Boolean Gröbner Bases 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buchberger, B.: Ein Algorithms zum Auffinden der Basiselemente des Restklassenrings bach einem nulldimensionalen Polynomial. Doctoral Dissertation Math. Inst. University of Innsbruck, Austria (1965)Google Scholar
  2. 2.
    Kapur, D.: An Approach for Solving Systems of Parametric Polynomial Equations. In: Saraswat, Van Hentenryck (eds.) Principles and Practices of Constraint Programming, pp. 217–244. MIT Press, Cambridge (1995)Google Scholar
  3. 3.
    Menju, S., Sakai, K., Sato, Y., Aiba, A.: A Study on Boolean Constraint Solvers. Constraint Logic Programming Selected Research, pp. 253–267. MIT Press, Cambridge (1993)Google Scholar
  4. 4.
    Montes, A.: A new algorithm for discussing Gröbner bases with parameters. J. Symb. Comp. 33(2), 183–208 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Manubens, M., Montes, A.: Improving DISPGB algorithm using the discriminant ideal. J. Symb. Comp. 41, 1245–1263 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Rudeanu, S.: Boolean functions and equations. North-Holland Publishing Co., Amsterdam. American Elsevier Publishing Co., Inc., New York (1974)Google Scholar
  7. 7.
    Sato, Y., Inoue, S.: On the Construction of Comprehensive Boolean Gröbner Bases. In: Proceedings of the Seventh Asian Symposium on Computer Mathematics (ASCM 2005), pp. 145–148 (2005)Google Scholar
  8. 8.
    Sakai, K., Sato, Y.: Boolean Gröbner bases. ICOT Technical Momorandum 488 (1988),
  9. 9.
    Sakai, K., Sato, Y., Menju, S.: Boolean Gröbner bases (revised). ICOT Technical Report 613 (1991),
  10. 10.
    Sato, Y., et al.: Set Constrains Solvers (Prolog version) (1996),
  11. 11.
    Sato, Y.: A new type of canonical Gröbner bases in polynomial rings over Von Neumann regular rings. In: Proceedings of ISSAC 1998, pp. 317–332. ACM Press, New York (1998)CrossRefGoogle Scholar
  12. 12.
    Sato, Y., et al.: Set Constrains Solvers (Klic version) (1998),
  13. 13.
    Suzuki, A., Sato, Y.: An Alternative approach to Comprehensive Gröbner Bases. J. Symb. Comp. 36(3-4), 649–667 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Suzuki, A., Sato, Y.: A Simple Algorithm to Compute Comprehensive Gröbner Bases Using Gröbner Bases. In: International Symposium on Symbolic and Algebraic Computation (ISSAC 2006), Proceedings, pp. 326–331 (2006)Google Scholar
  15. 15.
    Weispfenning, V.: Gröbner bases in polynomial ideals over commutative regular rings. In: Davenport, J.H. (ed.) ISSAC 1987 and EUROCAL 1987. LNCS, vol. 378, pp. 336–347. Springer, Heidelberg (1989)Google Scholar
  16. 16.
    Weispfenning, V.: Comprehensive Gröbner bases. J. Symb. Comp. 14(1), 1–29 (1992)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Yosuke Sato
    • 1
  • Akira Nagai
    • 2
  • Shutaro Inoue
    • 1
  1. 1.Tokyo University of ScienceTokyoJapan
  2. 2.NTT Information Sharing Platform LaboratoriesTokyoJapan

Personalised recommendations