Advertisement

Properties of Ascending Chains for Partial Difference Polynomial Systems

  • Gui-Lin Zhang
  • Xiao-Shan Gao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5081)

Abstract

A characteristic set theory for partial difference polynomial systems is proposed. We introduce the concept of coherent and regular ascending chains and prove that a partial difference ascending chain is the characteristic set of its saturation ideal if and only if it is coherent and regular. This gives a method to decide whether a polynomial belongs to the saturation ideal of an ascending chain. We introduce the concept of strongly irreducible ascending chains and prove that a partial difference ascending chain is the characteristic set of a reflexive prime ideal if and only if it is strongly irreducible. This gives a simple and precise representation for reflexive prime ideals.

Keywords

Ascending chain characteristic set coherent chain regular chain irreducible chain partial difference polynomial 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aubry, P.: Ensembles Triangulaires de polynômes et Résolution de Systèmes Algébriques, Implantation en Axiom. Thèse de l’université Pierre et Marie Curie (1999)Google Scholar
  2. 2.
    Aubry, P., Lazard, D., Moreno Maza, M.: On the Theory of Triangular Sets. Journal of Symbolic Computation 28, 105–124 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bentsen, I.: The Existence of Solutions of Abstract Partial Difference Polynomial. Trans. of AMS 158, 373–397 (1971)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Representation for the Radical of a Finitely Generated Differential Ideal. In: Proc. of ISSAC 1995, pp. 158–166. ACM Press, New York (1995)CrossRefGoogle Scholar
  5. 5.
    Boulier, F., Lemaire, F., Moreno Maza, M.: Well Known Theorems on Triangular Systems and the D5 Principle. In: Proc. of Transgressive Computing 2006, pp. 79–91 (2006)Google Scholar
  6. 6.
    Bouziane, D., Kandri Rody, A., Mârouf, H.: Unmixed-dimensional Decomposition of a Finitely Generated Perfect Differential Ideal. Journal of Symbolic Computation 31, 631–649 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Cheng, J.S., Gao, X.S., Yap, C.K.: Complete Numerical Isolation of Real Zeros in Zero-dimensional Triangular Systems. In: Prof. ISSAC 2007, pp. 92–99. ACM Press, New York (2007)CrossRefGoogle Scholar
  8. 8.
    Chou, S.C.: Mechanical Geometry Theorem Proving. Kluwer Academic Publishers, Norwell (1987)Google Scholar
  9. 9.
    Chou, S.C., Gao, X.S.: Ritt-Wu’s Decomposition Algorithm and Geometry Theorem Proving. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 207–220. Springer, Heidelberg (1990)Google Scholar
  10. 10.
    Cohn, R.M.: Difference Algebra. Interscience Publishers (1965)Google Scholar
  11. 11.
    Dahan, X., Moreno Maza, M., Schost, E., Wu, W., Xie, Y.: Lifting Techniques for Triangular Decompositions. In: Proc. ISSAC 2005, pp. 108–115. ACM Press, New York (2005)CrossRefGoogle Scholar
  12. 12.
    Gao, X.S., Chou, S.C.: A Zero Structure Theorem for Differential Parametric Systems. Journal of Symbolic Computation 16, 585–595 (1994)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Gao, X.S., Luo, Y.: A Characteristic Set Method for Difference Polynomial Systems. In: International Conference on Polynomial System Solving, November 24-26 (2004); Submitted to JSCGoogle Scholar
  14. 14.
    Gao, X.S., Luo, Y., Zhang, G.: A Characteristic Set Method For Ordinary Difference Polynomial Systems. MM-Preprints 25, 84–102 (2006)Google Scholar
  15. 15.
    Gao, X.S., van der Hoeven, J., Yuan, C., Zhang, G.: A Characteristic Set Method for Differential-Difference Polynomial Systems. In: MEGA 2007, Strobl, Austria (July 2007)Google Scholar
  16. 16.
    Hubert, E.: Factorization-free Decomposition Algorithms in Differential Algebra. Journal Symbolic Computation 29, 641–662 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kolchin, E.: Differential Algebra and Algebraic Groups. Academic Press, New York (1973)zbMATHGoogle Scholar
  18. 18.
    Kondratieva, M.V., Levin, A.B., Mikhalev, A.V., Pankratiev, E.V.: Differential and Difference Dimension Polynomials. Kluwer Academic Publishers, Dordrecht (1999)zbMATHGoogle Scholar
  19. 19.
    Ritt, J.F.: Differential Algebra, Amer. Math. Soc. Colloquium (1950)Google Scholar
  20. 20.
    Ritt, J.F., Raudenbush Jr., H.W.: Ideal Theory and Algebraic Difference Equations. Trans. of AMS 46, 445–452 (1939)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Rosenfeld, A.: Specialization in Differential Algebra. Trans. Am. Math. Soc 90, 394–407 (1959)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Wang, D.: Elimination Methods. Springer, Berlin (2000)Google Scholar
  23. 23.
    Wu, W.T.: On the Decision Problem and the Mechanization of Theorem in Elementary Geometry. Scientia Sinica 21, 159–172 (1978)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Wu, W.T.: A Constructive Theorey of Differential Algebraic Geometry. Lect. Notes in Math, vol. 1255, pp. 173–189. Springer, Heidelberg (1987)Google Scholar
  25. 25.
    Wu, W.T.: Basic Principle of Mechanical Theorem Proving in Geometries (in Chinese). Science Press, Beijing (1984); English Edition. Springer, Wien (1994)Google Scholar
  26. 26.
    van der Hoeven, J.: Differential and Mixed Differential-Difference Equations from the Effective Viewpoint (preprints, 1996)Google Scholar
  27. 27.
    Yang, L., Zhang, J.Z., Hou, X.R.: Non-linear Algebraic Equations and Automated Theorem Proving (in Chinese). ShangHai Science and Education Pub., ShangHai (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Gui-Lin Zhang
    • 1
  • Xiao-Shan Gao
    • 1
  1. 1.Key Laboratory of Mathematics Mechanization Institute of Systems Science, AMSSChinese Academy of Sciences 

Personalised recommendations