Regular Decompositions

  • Guillaume Moroz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5081)


We introduce the notion of regular decomposition of an ideal and present a first algorithm to compute it. Designed to avoid generic perturbations and eliminations of variables, our algorithm seems to have a good behaviour with respect to the sparsity of the input system. Beside, the properties of the regular decompositions allow us to deduce new algorithms for the computation of the radical and the weak equidimensional decomposition of an ideal. A first implementation shows promising results.


Polynomial Ring Jacobian Ideal Regular Sequence Split Algorithm Elimination Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bertini, E.: Sui sistemi lineari. Istit. Lombardo Accad. Sci. Lett. Rend. A Istituto 15(II), 24–28 (1982)Google Scholar
  2. 2.
    Eisenbud, D., Huneke, C., Vasconcelos, W.: Direct methods for primary decomposition. Invent. Math. 110(2), 207–235 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Wu, W.J.: On zeros of algebraic equations—an application of Ritt principle. Kexue Tongbao (English Ed. ) 31(1), 1–5 (1986)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Lazard, D.: A new method for solving algebraic systems of positive dimension. Discrete Appl. Math. 33(1-3), 147–160 (1991); Applied algebra, algebraic algorithms, and error-correcting codes, Toulouse (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Kalkbrener, M.: Three Contributions to Elimination Theory. Technical report, Johannes Kepler University, Linz, Austria (1991)Google Scholar
  6. 6.
    Aubry, P., Moreno Maza, M.: Triangular sets for solving polynomial systems: a comparative implementation of four methods. J. Symbolic Comput. 28(1-2), 125–154 (1999); Polynomial elimination—algorithms and applicationszbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Wang, D.: Computing triangular systems and regular systems. J. Symbolic Computation 30(2), 221–236 (2000)zbMATHCrossRefGoogle Scholar
  8. 8.
    On triangular decompositions of algebraic varieties, Technical Report TR 4/99, NAG Ltd., Oxford, UK. Presented at the MEGA 2000 (1999)Google Scholar
  9. 9.
    Lecerf, G.: Computing an equidimensional decomposition of an algebraic variety by means of geometric resolutions. In: Proceedings of ISSAC 2000. ACM, New York (2000)Google Scholar
  10. 10.
    Gianni, P., Trager, B., Zacharias, G.: Gröbner bases and primary decomposition of polynomial ideals. J. Symbolic Comput. 6(2-3), 149–167 (1988); Computational aspects of commutative algebrazbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Caboara, M., Conti, P., Traverso, C.: Yet another ideal decomposition algorithm. In: Mattson, H.F., Mora, T. (eds.) AAECC 1997. LNCS, vol. 1255, pp. 39–54. Springer, Heidelberg (1997)Google Scholar
  12. 12.
    Laplagne, S.: An algorithm for the computation of the radical of an ideal. In: ISSAC 2006, pp. 191–195. ACM, New York (2006)CrossRefGoogle Scholar
  13. 13.
    Kalkbrener, M.: Algorithmic properties of polynomial rings. J. Symbolic Comput. 26(5), 525–581 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Eisenbud, D.: Commutative algebra with a view toward algebraic geometry. Graduate Texts in Mathematics, vol. 150. Springer, Heidelberg (1994)Google Scholar
  15. 15.
    Matera, G., Turull Torres, J.M.: The space complexity of elimination theory: upper bounds. In: Foundations of computational mathematics, pp. 267–276. Springer, Heidelberg (1997)Google Scholar
  16. 16.
    Kaplansky, I.: Commutative rings. Revised edn. The University of Chicago Press, Chicago (1974)Google Scholar
  17. 17.
    Becker, T., Weispfenning, V.: Gröbner bases. Graduate Texts in Mathematics, vol. 141. Springer, New York (1993)zbMATHGoogle Scholar
  18. 18.
    Decker, W., Greuel, G.M., Pfister, G.: Primary decomposition: algorithms and comparisons. In: Algorithmic algebra and number theory, pp. 187–220. Springer, Heidelberg (1997/1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Guillaume Moroz
    • 1
  1. 1.INRIA, Paris-Rocquencourt Center, SALSA Project, UPMC, Univ Paris 06, LIP6, CNRS, UMR 7606, LIP6, UFR Ingéniérie 919, LIP6 Passy-Kennedy, Case 169, 4, Place Jussieu, F-75252 Paris 

Personalised recommendations