Symbolic Solution to Magnetohydrodynamic Hiemenz Flow in Porous Media

  • Seripah Awang Kechil
  • Ishak Hashim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5081)


A system of nonlinear ordinary differential equations governing the boundary layers of magnetohydrodynamic (MHD) Hiemenz flow in porous media is solved using a simple and efficient analytical technique of Adomian decomposition method (ADM) and Padé approximant through the computer algebra package system Maple. Several symbolic features of the Maple system are utilized to develop specific routines that compute the approximate analytical solutions of the stream, velocity and temperature functions for some exemplary prescribed parameters. Comparative study shows the well agreement of the present symbolic results with the existing numerical results.


Porous Medium Prandtl Number Thermal Boundary Layer Homotopy Analysis Method Approximate Analytical Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yahaya, F., Hashim, I., Ismail, E.S., Zulkifle, A.K.: Direct Solutions of N-th Order Initial Value Problems in Decomposition Series. Int. J. Nonlinear Sci. Numer. Simul. 8(3), 385–392 (2007)Google Scholar
  2. 2.
    Li, X.F.: Approximate Solution of Linear Ordinary Differential Equations with Variable Coefficients. Math. Comput. Simul. 75, 113–125 (2007)zbMATHCrossRefGoogle Scholar
  3. 3.
    Edneral, V.F.: Looking for Periodic Solutions of ODE Systems by the Normal Form Method. In: Wang, D., Zheng, Z. (eds.) Differential Equations with Symbolic Computations. Trends in Mathematics, pp. 173–200. Birkhäuser Verlag, Basel (2006)Google Scholar
  4. 4.
    Pratibha, J.D.J.: Stokes-Flow Problem Solved Using Maple. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3516, pp. 667–670. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Adomian, G.: Solving Frontier Problems of Physics: the Decomposition Method. Kluwer Academic, Dordrecht (1994)zbMATHGoogle Scholar
  6. 6.
    Baker, G.A.: Essentials of Padé Approximants. Academic Press, New York (1975)zbMATHGoogle Scholar
  7. 7.
    Yih, K.A.: The Effect of Uniform Suction/Blowing on Heat Transfer of Magnetohydrodynamic Hiemenz Flow Through Porous Media. Acta Mechanica 130, 147–158 (1998)zbMATHCrossRefGoogle Scholar
  8. 8.
    Hashim, I.: Comments on A New Algorithm for Solving Classical Blasius Equation by L. Wang. Appl. Math. Comput. 176, 700–703 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hashim, I.: Adomian Decomposition Method for Solving BVPs for Fourth-Order Integro-Differential Equations. J. Comp. Appl. Math. 193, 658–664 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hashim, I., Noorani, M.S.M., Ahmad, R., Bakar, S.A., Ismail, E.S., Zakaria, A.M.: Accuracy of the Adomian Decomposition Method Applied to the Lorenz System. Chaos Solitons Fractals 28, 1149–1158 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Noorani, M.S.M., Hashim, I., Ahmad, R., Bakar, S.A., Ismail, E.S., Zakaria, A.M.: Comparing Numerical Methods for the Solutions of the Chen System. Chaos, Solitons Fractals 32, 1296–1304 (2007)zbMATHCrossRefGoogle Scholar
  12. 12.
    Zheng, L.C., Chen, X.H., Zhang, X.X., He, J.H.: An Approximately Analytical Solution for the Marangoni Convection in an In-Ga-Sb System. Chin. Phys. Lett. 21, 1983–1985 (2004)CrossRefGoogle Scholar
  13. 13.
    Wazwaz, A.M.: The Modified Decomposition Method and Padé Approximants for a Boundary Layer Equation in Unbounded Domain. Appl. Math. Comput. 177, 737–744 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Awang Kechil, S., Hashim, I.: Series Solution for Unsteady Boundary-Layer Flows Due to Impulsively Stretching Plate. Chin. Phys. Lett. 24, 139–142 (2007)CrossRefGoogle Scholar
  15. 15.
    Awang Kechil, S., Hashim, I.: Non-perturbative Solution of Free-Convection Boundary-Layer Equation by Adomian Decomposition Method. Phys. Lett. A 363, 110–114 (2007)CrossRefGoogle Scholar
  16. 16.
    Awang Kechil, S., Hashim, I., Jiet, S.S.: Approximate Analytical Solutions for a Class of Laminar Boundary-Layer Equations. Chin. Phys. Lett. 24, 1981–1984 (2007)CrossRefGoogle Scholar
  17. 17.
    Cherruault, Y.: Convergence of Adomian’s Method. Math. Comput. Model. 14, 83–86 (1990)zbMATHCrossRefGoogle Scholar
  18. 18.
    Cherruault, Y., Adomian, G.: Decomposition Method: A New Proof of Convergence. Math. Comput. Model 18, 103–106 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Hosseini, M.M., Nasabzadeh, H.: On the convergence of Adomian decomposition method. Appl. Math. Comput. 182, 536–543 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Boyd, J.P.: Padé Approximant Algorithm for Solving Nonlinear Ordinary Differential Equation Boundary Value Problems on an Unbounded Domain. Comput. Phys. 11, 299–303 (1997)CrossRefGoogle Scholar
  21. 21.
    Liao, S.J.: The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems. Ph.D. Thesis, Shanghai Jiao Tong University (1992)Google Scholar
  22. 22.
    Lin, H.T., Lin, L.K.: Similarity Solutions for Laminar Forced Convection Heat Transfer from Wedges to Fluids of Any Prandtl Number. Int. J. Heat Mass Transfer 30, 1111–1118 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Seripah Awang Kechil
    • 1
  • Ishak Hashim
    • 2
  1. 1.Department of MathematicsUniversiti Teknologi MARASelangorMalaysia
  2. 2.School of Mathematical SciencesNational University of MalaysiaSelangorMalaysia

Personalised recommendations