Advertisement

A Method and Its Implementation for Constructing Bäcklund Transformations to Nonlinear Evolution Equations

  • Zhibin Li
  • Yinping Liu
  • Haifeng Qian
Conference paper
  • 1.1k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5081)

Abstract

An algorithmic method to construct a kind of auto Bäcklund transformations (BTs) is proposed. A Maple package AutoBT, which can entirely automatically generate auto BT is presented. AutoBT has been effectively applied to many nonlinear evolution equations with physical significance. Not only are previously known BT recovered but also in some cases new and more general form of BT are obtained.

Keywords

Burger Equation Nonlinear Evolution Equation Nonlinear PDEs Parameter Constraint mKdV Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Steeb, W.H., Grauel, A., Kloke, M., Spieker, B.M.: Nonlinear diffusion equations, integrability and the Painleve property. Phys. Scripta. 31, 5 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Xu, G.Q., Li, Z.B.: A maple package for the Painleve test of nonlinear partial differential equations. Chin. Phys. Lett. 20, 975 (2003)CrossRefGoogle Scholar
  3. 3.
    Lou, S.Y.: Painleve test for the integrable dispersive long waves. Phys. Lett. A 176, 96 (1993)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Wang, M.L., Zhou, Y.B., Li, Z.B.: Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A 216, 67 (1996)zbMATHCrossRefGoogle Scholar
  5. 5.
    Fan, E.G.: Two new applications of the homogeneous balance method. Phys. Lett. A 265, 353 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  7. 7.
    Ma, W.X., Geng, X.G.: Bäcklund transformations of soliton systems from symmetry constraints. In: Bäcklund and Darboux Transformations. The Geometry of Solitons. CRM Proceedings & Lecture Notes, vol. 29. American Mathematics Society (2001)Google Scholar
  8. 8.
    Lin, J., Lou, S.Y.: Multisoliton solutions of the (3+1)-dimensional Nizhnik-Novikov-Veselov equation. Comm. Theor. Phys. 37, 265–268 (2002)MathSciNetGoogle Scholar
  9. 9.
    Van de Leur, J.: Bäcklund transformations for new integrable hierarchies related to the polynomial Lie algebra. J. Geo. Phys. 57, 435–447 (2007)zbMATHCrossRefGoogle Scholar
  10. 10.
    Sokalski, K., Wietecha, T., Lisowski, Z.: Variational approach to the Bäcklund transformations. Acta Physica Polonica B 32, 17–28 (2001)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Sokalski, K., Wietecha, T., Sokalska, D.: Existence of dual equations by means of strong necessary conditions - Analysis of integrability of partial differential nonlinear equations. J. Non. Math. Phys. 12, 31–52 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Fu, Z.T., Liu, S.K., Liu, S.D.: New kinds of solutions to Gardner equation. Chaos, Solitons and Fractals 20, 301–309 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kichenassamy, S., Oliver, P.J.: Existence and nonexistence of solitary wave solutions to higher-order model evolution equations. SIAM J. Math. Anal. 23, 1141–1166 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Liu, S.K., Liu, S.D.: Nonlinear Equations in Physics. Peking University Press, Beijing (2000)Google Scholar
  15. 15.
    Morrison, A.J., Parks, E.J.: The N-soliton solution of the modified generalised Vakhnenko equation. Chaos, Solitons and Fractals 16, 13–26 (2003)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Zhibin Li
    • 1
    • 2
  • Yinping Liu
    • 2
  • Haifeng Qian
    • 2
  1. 1.Institute of Theoretical Computing 
  2. 2.Department of Computer ScienceEast China Normal UniversityShanghaiChina

Personalised recommendations