Advertisement

A New Property of Hamming Graphs and Mesh of d-ary Trees

  • Alain Bretto
  • Cerasela Jaulin
  • Luc Gillibert
  • Bernard Laget
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5081)

Abstract

In this article we characterize two well-known graphs used in many applications, particularly in network applications: Hamming graphs and meshes of d-ary trees MT(d,1). More precisely, we show that they are so-called \(\mathbb{G}\)-graphs. \(\mathbb{G}\)-graphs are a new type of graphs constructed from a group. They have nice algebraic proprieties and can be regular or semi-regular.

Keywords

Automorphism Group Cayley Graph Left Action Graph Automorphism London Mathematical Society Student Text 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babai, L.: Handbook of combinatorics. In: Automorphism groups, isomorphism, reconstruction, ch. 27 (1994)Google Scholar
  2. 2.
    Bretto, A., Faisant, A.: Another way for associating a graph to a group. Math.Slovaca 55(1), 1–8 (2005)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Bretto, A., Gilibert, L., Laget, B.: Symmetric and Semisymmetric Graphs Construction Using G-graphs. In: Kauers, M. (ed.) International Symposium on Symbolic and Algebraic Computation (ISSAC 2005), Beijing, China, July 24-27, 2005, pp. 61–67. ACM press, New York (2005) ISBN:1-59593-095-7CrossRefGoogle Scholar
  4. 4.
    Bretto, A., Gilibert, L.: G-graphs for the cage problem: a new upper bound. In: International Symposium on Symbolic and Algebraic Computation (ISSAC 2007), Waterloo, Ontario, Canada, July-29 August-1st 2007. ACM press, New York (2007) ISBN:978-1-59593-743-8 Google Scholar
  5. 5.
    Bretto, A., Faisant, A., Gillibert, L.: G-graphs: A new representation of groups. Journal of Symbolic Computation 42(5), 549–560 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cannon, J.J., Holt, D.F.: Automorphism group computation and isomorphism testing in finite groups. Journal of Symbolic Computation 35(3), 241–267 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Cannon, J.J., Holt, D.F.: Computing conjugacy class representatives in permutation groups. Journal of Algebra 300(1), 213–222 (2006) MR2228644zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cooperman, G., Finkelstein, L., Sarawagi, N.: Applications of Cayley Graphs. In: Sakata, S. (ed.) AAECC 1990. LNCS, vol. 508, pp. 367–378. Springer, Heidelberg (1991)Google Scholar
  9. 9.
    Cooperman, G., Finkelstein, L.: New Methods for Using Cayley Graphs in Interconnection Networks. Discrete Applied Mathematics 37/38, 95–118 (1992)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Fraigniaud, P., Konig, J.-C., Lazard, E.: Oriented hypercubes. Networks 39(2), 98–106 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Zhang, G.-F., Gao, X.-S.: Spatial geometric constraint solving based on k-connected graph decomposition. In: Proceedings of the ACM symposium on Applied computing Dijon, France 2006 SESSION: Geometric computing and reasoning (GCR), pp. 979–983. ACM Press, New York (2006)Google Scholar
  12. 12.
    The GAP Team, (06 May 2002), GAP - Reference Manual, Release 4.3, http://www.gap-system.org
  13. 13.
    Lauri, J., Scapellato, R.: Topics in Graphs Automorphisms and Reconstruction, London Mathematical Society Student Texts (2003)Google Scholar
  14. 14.
    Lauri, J.: Constructing graphs with several pseudosimilar vertices or edges. Discrete Mathematics 267(1-3), 197–211 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Rockmore, D., Hordijk, W., Kostelec, P., Stadler, P.F.: Fast Fourier Transform for Fitness Landscapes. Applied and Computational Harmonic Analysis 12(1), 57–76 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Sunil Chandran, L., Kavitha, T.: The carvingwidth of hypercubes. Discrete Mathematics 306(18), 2270–2274 (2006)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Alain Bretto
    • 1
  • Cerasela Jaulin
    • 1
  • Luc Gillibert
    • 1
  • Bernard Laget
    • 2
  1. 1.Université de Caen, GREYC CNRS UMR-6072Caen cedexFrance
  2. 2.ENISESaint Etienne Cedex 02France

Personalised recommendations