Skip to main content

Fitting a Step Function to a Point Set

  • Conference paper
Book cover Algorithms - ESA 2008 (ESA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5193))

Included in the following conference series:

Abstract

We consider the problem of fitting a step function to a set of points. More precisely, given an integer k and a set P of n points in the plane, our goal is to find a step function f with k steps that minimizes the maximum vertical distance between f and all the points in P. We first give an optimal Θ(n logn) algorithm for the general case. In the special case where the points in P are given in sorted order according to their x-coordinates, we give an optimal Θ(n) time algorithm. Then, we show how to solve the weighted version of this problem in time O(n log4 n). Finally, we give an O(n h 2 logh) algorithm for the case where h outliers are allowed, and the input is sorted. The running time of all our algorithms is independent of k.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P.K., Har-Peled, S., Yu, H.: Robust shape fitting via peeling and grating coresets. In: Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 182–191 (2006)

    Google Scholar 

  2. Agarwal, P.K., Sharir, M.: Efficient algorithms for geometric optimization. Computing Surveys 30 (1998)

    Google Scholar 

  3. Atanassov, R., Bose, P., Couture, M., Maheshwari, A., Morin, P., Paquette, M., Smid, M., Wuhrer, S.: Algorithms for optimal outlier removal. Journal of Discrete Algorithms (to appear)

    Google Scholar 

  4. Buragohain, C., Shrivastava, N., Suri, S.: Space efficient streaming algorithms for the maximum error histogram. In: 23rd International Conference on Data Engineering, pp. 1026–1035 (2007)

    Google Scholar 

  5. Chazal, F., Das, S.: An efficient algorithm for fitting rectilinear x - monotone curve to a point set in a plane. Technical report (August 2006), http://math.u-bourgogne.fr/IMB/chazal/publications.htm

  6. Frederickson, G.N.: Optimal algorithms for tree partitioning. In: Proc. 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 168–177 (1991)

    Google Scholar 

  7. Frederickson, G.N., Johnson, D.B.: Generalized selection and ranking: Sorted matrices. SIAM Journal on Computing 13(1), 14–30 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geometry problems. In: Proc. 16th Annual ACM Symposium on Theory of Computing, pp. 135–143 (1984)

    Google Scholar 

  9. Goodrich, M.T.: Efficient piecewise-linear function approximation using the uniform metric. Discrete and Computational Geometry 14(4), 445–462 (1995)

    MATH  MathSciNet  Google Scholar 

  10. Guha, S., Shim, K.: A note on linear time algorithms for maximum error histograms. IEEE Transactions on Knowledge and Data Engineering 19(7), 993–997 (2007)

    Article  Google Scholar 

  11. Har-Peled, S., Wang, Y.: Shape fitting with outliers. SIAM Journal on Computing 33(2), 269–285 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM Journal on Computing 13(2), 338–355 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ioannidis, Y., Poosala, V.: Histogram-based solutions to diverse database estimation problems. IEEE Data Eng. Bull. 18(3), 10–18 (1995)

    Google Scholar 

  14. Karras, P., Sacharidis, D., Mamoulis, N.: Exploiting duality in summarization with deterministic guarantees. In: 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 380–389 (2007)

    Google Scholar 

  15. Lopez, M., Mayster, Y.: Weighted rectilinear approximation of points in the plane. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 642–653. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Mayster, Y., Lopez, M.A.: Approximating a set of points by a step function. Journal of Visual Comunication and Image Represententation 17(6), 1178–1189 (2006)

    Article  Google Scholar 

  17. Díaz-Báñez, J.M., Mesa, J.A.: Fitting rectilinear polygonal curves to a set of points in the plane. European Journal of Operational Research 130(1), 214–222 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Wang, D.P.: A new algorithm for fitting a rectilinear x-monotone curve to a set of points in the plane. Pattern Recognition Letters 23(1-3), 329–334 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Dan Halperin Kurt Mehlhorn

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fournier, H., Vigneron, A. (2008). Fitting a Step Function to a Point Set. In: Halperin, D., Mehlhorn, K. (eds) Algorithms - ESA 2008. ESA 2008. Lecture Notes in Computer Science, vol 5193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87744-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87744-8_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87743-1

  • Online ISBN: 978-3-540-87744-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics