Skip to main content

CG-M-FOCUSS and Its Application to Distributed Compressed Sensing

  • Conference paper
Advances in Neural Networks - ISNN 2008 (ISNN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5263))

Included in the following conference series:

Abstract

M-FOCUSS is one of the most successful and efficient methods for sparse representation. To reduce the computational cost of M-FOCUSS and to extend its availability for large scale problems, M-FOCUSS is extended to CG-M-FOCUSS by incorporating conjugate gradient (CG) iterations in this paper. Furthermore, the CG-M-FOCUSS is applied to distributed compressed sensing. We illustrate the performance of CG-M-FOCUSS by an MRI image reconstruction example, in which CG-M- FOCUSS can not only reconstruct the MRI image with high precision, but also considerably reduce the computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kim, S.J., Koh, K., Lustig, M., Boyd, S., Gorinevsky, D.: An interior-point method for large-scale ℓ1-regularized least squares. IEEE Journal on Selected Topics in Signal Processing 4(1), 606–617 (2007)

    Article  Google Scholar 

  2. Rao, B.D.: Signal processing with the sparseness constraint. In: Proceedings of the ICASSP, Seattle, WA, vol. III, pp. 1861–1864 (1998)

    Google Scholar 

  3. Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications. John Wiley & Sons, New York (2003)

    Google Scholar 

  4. Mallat, S.G., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Processing 41(12), 3397–3415 (1993)

    Article  MATH  Google Scholar 

  5. Tropp, J.: Greed is good: algorithmic results for sparse approximation. IEEE Trans. Information Theory 50(10), 2231–2242 (2004)

    Article  MathSciNet  Google Scholar 

  6. Chen, S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing 20(1), 33–61 (1998)

    Article  MathSciNet  Google Scholar 

  7. Donoho, D.L., Elad, M.: Maximal sparsity representation via ℓ1 minimization. In: Proc. National Academy Science, vol. 100, pp. 2197–2202 (2003)

    Google Scholar 

  8. Li, Y.Q., Cichocki, A., Amari, S.: Analysis of sparse representation and blind source separation. Neural Computation 16, 1193–1234 (2004)

    Article  MATH  Google Scholar 

  9. Takigawa, I., Kudo, M., Toyama, J.: Performance analysis of minimum ℓ1-norm solutions for underdetermined source separation. IEEE Trans. Signal Processing 52(3), 582–591 (2004)

    Article  MathSciNet  Google Scholar 

  10. Li, Y.Q., Amari, S., Cichocki, A., Ho, D.W.C., Xie, S.L.: Underdetermined blind source separation based on sparse representation. IEEE Trans. Signal Processing 54(2), 423–437 (2006)

    Article  Google Scholar 

  11. Bofill, P., Zibulevsky, M.: Underdetermined blind source separation using sparse representations. Signal Processing 81, 2353–2362 (2001)

    Article  MATH  Google Scholar 

  12. Gorodnitsky, I.F., George, J., Rao, B.D.: Neuromagnetic source imaging with FOCUSS: A recursive weighted minimum norm algorithm. Electroencephalography and Clinical Neurophysiology 95(4), 231–251 (1995)

    Article  Google Scholar 

  13. Rao, B.D., Kreutz-Delgado, K.: Deriving algorithms for computing sparse solutions to linear inverse problems. In: Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 955–959 (1997)

    Google Scholar 

  14. Gorodnitsky, I.F., Rao, B.D.: Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm. IEEE Trans. Signal Processing 45(3), 600–616 (1997)

    Article  Google Scholar 

  15. Rao, B.D., Kreutz-Delgado, K.: An affine scaling methodology for best basis selection. IEEE Trans. Signal Processing 47(1), 187–200 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kreutz-Delgado, K., Murry, J.F., Rao, B.D., et al.: Dictionary learning algorithms for sparse representation. Neural Computation 15, 349–396 (2003)

    Article  MATH  Google Scholar 

  17. Cotter, S.F., Rao, B.D., Engan, K., Kreutz-Delgado, K.: Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans. Signal Processing 53(7), 2477–2488 (2005)

    Article  MathSciNet  Google Scholar 

  18. Baraniuk, R.: Compressive sensing. IEEE Signal Processing Magazine 24(4), 118–121 (2007)

    Article  Google Scholar 

  19. Donoho, D.: Compressed sensing. IEEE Trans. on Information Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  20. Duarte, M., Davenport, M., Takhar, D., Laska, J., Sun, T., Kelly, K., Baraniuk, R.: Single-pixel imaging via compressive sampling. IEEE Signal Processing Magazine 25(2), 83–91 (2008)

    Article  Google Scholar 

  21. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards 49(6), 409–436 (1952)

    MATH  MathSciNet  Google Scholar 

  22. Nocedal, J., Wright, S.J.: Numerical optimization, 2nd edn. Springer series in operations research and financial engineering. Springer, New York (2006)

    MATH  Google Scholar 

  23. Duarte, M., Sarvotham, S., Baron, D., Wakin, M., Baraniuk, R.: Distributed compressed sensing of jointly sparse signals. In: Conference Record of the Thirty-Ninth Asilomar Conference on Signals, Systems and Computers, pp. 1537–1541 (2005)

    Google Scholar 

  24. Lustig, M., Donoho, D.L., Santos, J.M., Pauly, J.M.: Compressed sensing MRI. IEEE Signal Processing Magazine 25(2), 72–82 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

He, Z., Cichocki, A., Zdunek, R., Cao, J. (2008). CG-M-FOCUSS and Its Application to Distributed Compressed Sensing. In: Sun, F., Zhang, J., Tan, Y., Cao, J., Yu, W. (eds) Advances in Neural Networks - ISNN 2008. ISNN 2008. Lecture Notes in Computer Science, vol 5263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87732-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87732-5_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87731-8

  • Online ISBN: 978-3-540-87732-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics