Advertisement

Large-Scale Optimization of Non-separable Building-Block Problems

  • David Iclănzan
  • Dumitru Dumitrescu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5199)

Abstract

This paper presents principled results demonstrating how the identification and exploitation of variable dependencies by means of Artificial Neural Network powered online model building, combined with a model based local-search, opens the way towards large-scale optimization of hard, non-separable building-block problems.

Keywords

large-scale optimization online model building model based local-search adaptive neighborhood structure scalability analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sastry, K., Goldberg, D.E., Llora, X.: Towards billion-bit optimization via a parallel estimation of distribution algorithm. In: GECCO 2007: Proceedings of the 9th annual conference on Genetic and evolutionary computation, pp. 577–584. ACM, New York (2007)Google Scholar
  2. 2.
    Yu, T.L., Sastry, K., Goldberg, D.E., Pelikan, M.: Population sizing for entropy-based model building in discrete estimation of distribution algorithms. In: Lipson, H. (ed.) GECCO, pp. 601–608. ACM, New York (2007)CrossRefGoogle Scholar
  3. 3.
    Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: Bayesian optimization algorithm, population sizing, and time to convergence. In: Whitley, L.D., Goldberg, D.E., Cantú-Paz, E., Spector, L., Parmee, I.C., Beyer, H.G. (eds.) GECCO, pp. 275–282. Morgan Kaufmann, San Francisco (2000)Google Scholar
  4. 4.
    Iclanzan, D., Dumitrescu, D.: Overcoming hierarchical difficulty by hill-climbing the building block structure. In: Thierens, D., et al. (eds.) GECCO 2007: Proceedings of the 9th annual conference on Genetic and Evolutionary Computation, vol. 2, pp. 1256–1263. ACM Press, London (2007)Google Scholar
  5. 5.
    Watson, R.A., Hornby, G., Pollack, J.B.: Modeling building-block interdependency. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN V 1998. LNCS, vol. 1498, pp. 97–108. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Watson, R.A., Pollack, J.B.: Hierarchically consistent test problems for genetic algorithms: Summary and additional results. In: Brave, S. (ed.) GECCO 1999: Late Breaking Papers, Orlando, Florida, USA, July 13, 1999, pp. 292–297 (1999)Google Scholar
  7. 7.
    Pelikan, M., Goldberg, D.E.: Escaping hierarchical traps with competent genetic algorithms. In: Spectes, L., et al. (eds.) GECCO 2001, pp. 511–518. Morgan Kaufmann, San Francisco (2001)Google Scholar
  8. 8.
    Sastry, K., Goldberg, D.E.: Designing competent mutation operators via probabilistic model building of neighborhoods. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 114–125. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Jones, T.: Evolutionary Algorithms, Fitness Landscapes and Search. PhD thesis, University of New Mexico, Albuquerque, NM (1995)Google Scholar
  10. 10.
    Iclanzan, D., Dumitrescu, D.: Going for the big fishes: Discovering and combining large neutral and massively multimodal building-blocks with model based macro-mutation. In: GECCO 2008: Proceedings of the 10th annual conference on Genetic and Evolutionary Computation. ACM Press, New York (accepted, 2008)Google Scholar
  11. 11.
    Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological Cybernetics 43, 59–69 (1982)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • David Iclănzan
    • 1
  • Dumitru Dumitrescu
    • 1
  1. 1.Department of Computer ScienceBabeş-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations