Advertisement

Approximate Solutions in Space Mission Design

  • Oliver Schütze
  • Massimiliano Vasile
  • Carlos A. Coello Coello
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5199)

Abstract

In this paper, we address multi-objective space mission design problems. We argue that it makes sense from the practical point of view to consider in addition to the ‘optimal’ trajectories (in the Pareto sense) also approximate or nearly optimal solutions since this can lead to a significant larger variety for the decision maker. For this, we suggest a novel MOEA which is a modification of the well-known NSGA-II algorithm equipped with a recently proposed archiving strategy which aims for the storage of the set of approximate solution of a given MOP. Using this algorithm we will examine several space missions and demonstrate the benefit of the novel approach.

Keywords

Pareto Front Multiobjective Optimization Pareto Optimal Solution Pareto Point Pareto Optimal Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coello Coello, C.A., Lamont, G., Van Veldhuizen, D.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  2. 2.
    Coverstone-Caroll, V., Hartmann, J.W., Mason, W.M.: Optimal multi-objective low-thrust spacecraft trajectories. Computer Methods in Applied Mechanics and Engineering 186, 387–402 (2000)CrossRefGoogle Scholar
  3. 3.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  4. 4.
    Hanne, T.: On the convergence of multiobjective evolutionary algorithms. European Journal Of Operational Research 117(3), 553–564 (1999)CrossRefzbMATHGoogle Scholar
  5. 5.
    Knowles, J., Corne, D.: Bounded Pareto Archiving: Theory and Practice. In: Metaheuristics for Multiobjective Optimisation. Lecture Notes in Economics and Mathematical Systems, vol. 535, pp. 39–64. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multiobjective optimization. Evolutionary Computation 10(3), 263–282 (2002)CrossRefGoogle Scholar
  7. 7.
    Loridan, P.: ε-solutions in vector minimization problems. Journal of Optimization, Theory and Application 42, 265–276 (1984)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Petropoulos, A.E., Longuski, J.M., Vinh, N.X.: Shape-based analytical representations of low-thrust trajectories for gravity-assist applications. In: AAS/AIAA Astrodynamics Specialists Conference, AAS Paper 99-337, Girdwood, Alaska (1999)Google Scholar
  9. 9.
    Rudolph, G., Agapie, A.: Convergence properties of some multi-objective evolutionary algorithms. In: Proceedings of the 2000 Conference on Evolutionary Computation, vol. 2, pp. 1010–1016 (2000)Google Scholar
  10. 10.
    Schütze, O., Coello Coello, C.A., Tantar, E., Talbi, E.-G.: Computing finite size representations of the set of approximate solutions of an MOP with stochastic search algorithms. In: The Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2008) (to appear, 2008)Google Scholar
  11. 11.
    Schütze, O., Vasile, M., Junge, O., Dellnitz, M., Izzo, D.: Designing optimal low thrust gravity assist trajectories using space pruning and a multi-objective approach. In: Engineering Optimization (to appear, 2008)Google Scholar
  12. 12.
    Vasile, M., Locatelli, M.: A hybrid multiagent approach for global trajectory optimization. Journal of Global Optimization (to appear, 2008)Google Scholar
  13. 13.
    Vasile, M., Schütze, O., Junge, O., Radice, G., Dellnitz, M.: Spiral trajectories in global optimisation of interplanetary and orbital transfers. Ariadna study report ao4919 05/4106, contract number 19699/nl/he, European Space Agency (2006)Google Scholar
  14. 14.
    White, D.J.: Epsilon efficiency. Journal of Optimization Theory and Applications 49(2), 319–337 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. PhD thesis, ETH Zurich, Switzerland (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Oliver Schütze
    • 1
  • Massimiliano Vasile
    • 2
  • Carlos A. Coello Coello
    • 1
  1. 1.CINVESTAV-IPN, Computer Science DepartmentMexico CityMexico
  2. 2.Department of Aerospace EngineeringUniversity of GlasgowGlasgowScotland

Personalised recommendations