Skip to main content

Approximating Minimum Multicuts by Evolutionary Multi-objective Algorithms

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5199))

Abstract

It has been shown that simple evolutionary algorithms are able to solve the minimum cut problem in expected polynomial time when using a multi-objective model of the problem. In this paper, we generalize these ideas to the NP-hard minimum multicut problem. Given a set of k terminal pairs, we prove that evolutionary algorithms in combination with a multi-objective model of the problem are able to obtain a k-approximation for this problem in expected polynomial time.

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the Collaborative Research Center “Computational Intelligence” (SFB 531).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahuja, R.K., Magnati, T.L., Orlin, J.B.: Network flows: theory, algorithms, and applications. Prentice-Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  2. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. Journal of the ACM 45(3), 501–555 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bentz, C., Costa, M.-C., Létocard, L., Roupin, F.: Erratum to M.-C. Costa, L. Létocard and F. Roupin: Minimal multicut and maximal integer maxiflow: A survey. European Journal of Operational Research 162(1), 55–69 (2005); European Journal of Operational Research 177(2), 1312 (2007)

    Article  MathSciNet  Google Scholar 

  4. Brockhoff, D., Friedrich, T., Hebbinghaus, N., Klein, C., Neumann, F., Zitzler, E.: Do additional objectives make a problem harder? In: Proc. of the 9th Genetic and Evolutionary Comp. Conference (GECCO 2007), pp. 765–772. ACM Press, New York (2007)

    Google Scholar 

  5. Cheriyan, J., Karloff, H., Rabani, Y.: Approximating directed multicuts. In: Proc. of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS 2001), pp. 320–328 (2001)

    Google Scholar 

  6. Chuzhoy, J., Khanna, S.: Polynomial flow-cut gaps and hardness of directed cut problems. In: Proc. of the 39th Annual ACM Symposium on Theory of Computing (STOC 2007), pp. 179–188 (2007)

    Google Scholar 

  7. Costa, M.-C., Létocard, L., Roupin, F.: Minimal multicut and maximal integer maxiflow: A survey. European Journal of Operational Research 162(1), 55–69 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of multiterminal cuts. SIAM Journal of Computing 23, 864–894 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Doerr, B., Happ, E., Klein, C.: Crossover is provably useful in evolutionary computation. In: Proc. of the 10th Genetic and Evolutionary Computation Conference (GECCO 2008). ACM Press, New York (to appear, 2008)

    Google Scholar 

  10. Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Approximating covering problems by randomized search heuristics using multi-objective models. In: Proc. of the 9th Genetic and Evolutionary Computation Conference (GECCO 2007), pp. 797–804 (2007)

    Google Scholar 

  11. Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi)cut theorems and their applications. In: Proc. of the 25th Annual ACM Symposium on Theory of Computing (STOC 1993), pp. 698–707 (1993)

    Google Scholar 

  12. Giel, O.: Expected runtimes of a simple multi-objective evolutionary algorithm. In: Proc. of the IEEE Congress on Evolutionary Computation (CEC 2003), pp. 1918–1925 (2003)

    Google Scholar 

  13. Horoba, C., Neumann, F.: Benefits and drawbacks for the use of ε-dominance in evolutionary multi-objective optimization. In: Proc. of the 10th Genetic and Evolutionary Computation Conference (GECCO 2008). ACM Press, New York (to appear, 2008)

    Google Scholar 

  14. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multi-objective optimization. Evolutionary Computation 10(3), 263–282 (2002)

    Article  Google Scholar 

  15. Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of multiobjective evolutionary algorithms on pseudo-boolean functions. IEEE Transactions on Evolutionary Computation 8(2), 170–182 (2004)

    Article  Google Scholar 

  16. Neumann, F.: Expected runtimes of a simple evolutionary algorithm for the multi-objective minimum spanning tree problem. European Journal of Operational Research 181(3), 1620–1629 (2007)

    Article  MATH  Google Scholar 

  17. Neumann, F., Reichel, J., Skutella, M.: Computing minimum cuts by randomized search heuristics. In: Proc. of the 10th Genetic and Evolutionary Computation Conference (GECCO 2008) (2008); (to appear, available as Technical Report CI-242/08, Collaborative Research Center 531, Technical University of Dortmund)

    Google Scholar 

  18. Neumann, F., Wegener, I.: Minimum spanning trees made easier via multi-objective optimization. Natural Computing 5(3), 305–319 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms and the minimum spanning tree problem. Theor. Comp. Sci. 378(1), 32–40 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Scharnow, J., Tinnefeld, K., Wegener, I.: The analysis of evolutionary algorithms on sorting and shortest paths problems. Journal of Mathematical Modelling and Algorithms, 349–366 (2004)

    Google Scholar 

  21. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin (2003)

    Google Scholar 

  22. Witt, C.: Worst-case and average-case approximations by simple randomized search heuristics. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 44–56. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Neumann, F., Reichel, J. (2008). Approximating Minimum Multicuts by Evolutionary Multi-objective Algorithms. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds) Parallel Problem Solving from Nature – PPSN X. PPSN 2008. Lecture Notes in Computer Science, vol 5199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87700-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87700-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87699-1

  • Online ISBN: 978-3-540-87700-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics