Investigations into the Effect of Multiobjectivization in Protein Structure Prediction

  • Julia Handl
  • Simon C. Lovell
  • Joshua Knowles
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5199)


Physics-based potential energy functions used in protein structure prediction are composed of several energy terms combined in a weighted sum. ‘Multiobjectivization’ — splitting up the energy function into its components and optimizing the components as a vector using multiobjective methods — may have beneficial effects for tackling these difficult problems. In this paper we investigate the hypotheses that multiobjectivization can (i) reduce the number of local optima in the landscapes, as seen by hillclimbers, and (ii) equalize the influence of different energy components that range over vastly different energy scales and hence usually swamp each other’s search gradients. The investigations use models of two real molecules, the alanine dipeptide and Metenkephalin under the Amber99 energy function, and consider hillclimbers with a range of mutation step sizes. Our findings support the hypotheses and also indicate that multiobjectivization is competitive with alternative methods of escaping local optima.


Local Optimum Multiobjective Optimization Protein Structure Prediction Gaussian Mutation Alanine Dipeptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonneau, R., Tsai, J., Ruczinski, I., Chivian, D., Rohl, C., Strauss, C., Baker, D.: Rosetta in CASP4: progress in ab initio protein structure prediction. Proteins (suppl. 5), 119–126 (2001)CrossRefGoogle Scholar
  2. 2.
    Brockhoff, D., Friedrich, T., Hebbinghaus, N., Klein, C., Neumann, F., Zitzler, E.: Do additional objectives make a problem harder? In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 765–772. ACM Press, New York (2007)CrossRefGoogle Scholar
  3. 3.
    Cutello, V., Narzisi, G., Nicosia, G.: A multi-objective evolutionary approach to protein structure prediction. J. R. Soc. Interface 3(6), 139–151 (2006)CrossRefGoogle Scholar
  4. 4.
    Day, R.O., Zydallis, J.B., Lamont, G.B., Pachter, R.: Solving the protein structure prediction problem through a multiobjective genetic algorithm. Nanotechnology 2, 32–35 (2002)Google Scholar
  5. 5.
    Duan, Y., et al.: A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry 24(16), 1999–2012 (2003)CrossRefGoogle Scholar
  6. 6.
    Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2005)zbMATHGoogle Scholar
  7. 7.
    Handl, J., Lovell, S., Knowles, J.: Multiobjectivization by decomposition of scalar cost functions. In: Rudolph, G., et al. (eds.) PPSN X 2008. LNCS, vol. 5199, pp. 31–40. Springer, Berlin (2008)Google Scholar
  8. 8.
    Jacobson, M., Pincus, D., Rapp, C., Day, T., Honig, B., Shaw, D., Friesner, R.: A hierarchical approach to all-atom protein loop prediction. Proteins: Structure, Function, and Bioinformatics 55(2), 351–367 (2004)CrossRefGoogle Scholar
  9. 9.
    Jensen, M.: Helper-objectives: Using multi-objective evolutionary algorithms for single-objective optimisation. Journal of Mathematical Modelling and Algorithms 3(4), 323–347 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Jones, D.: Predicting novel protein folds by using FRAGFOLD. Proteins (Suppl. 5), 127–132 (2001)CrossRefGoogle Scholar
  11. 11.
    Jones, T.: Crossover, macromutation, and population-based search. In: Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 73–80. Morgan Kaufmann, San Francisco (1995)Google Scholar
  12. 12.
    Knowles, J., Watson, R., Corne, D.: Reducing local optima in single-objective problems by multi-objectivization. In: Proceedings of the Congress on Evolutionary Multiobjective Optimization, pp. 269–283. Springer, Berlin (2001)Google Scholar
  13. 13.
    Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the Pareto archived evolution strategy. Evolutionary Computation 8(2), 149–172 (2000)CrossRefGoogle Scholar
  14. 14.
    Neumann, F., Wegener, I.: Minimum spanning trees made easier via multi-objective optimization. Natural Computing 5(3), 305–319 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Ramachandran, G.N., Ramakrishnan, C., Sasisekharan, V.: Stereochemistry of polypeptide chain configurations. Journal of Molecular Biology 7, 95–99 (1963)CrossRefGoogle Scholar
  16. 16.
    Ren, P., Ponder, J.W.: Polarizable atomic multipole water model for molecular mechanics simulation. Journal of Physical Chemistry B 107, 5933–5947 (2003)CrossRefGoogle Scholar
  17. 17.
    Scharnow, J., Tinnefeld, K., Wegener, I.: The analysis of evolutionary algorithms on sorting and shortest paths problems. Journal of Mathematical Modelling and Algorithms 3(4), 346–366 (2004)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Schulze-Kremer, S.: Application of evolutionary computation to protein folding with specialized operators. In: Fogel, G.B., Corne, D.W. (eds.) Evolutionary Computation in Bioinformatics, pp. 163–191. Morgan Kaufmann, San Francisco (2003)CrossRefGoogle Scholar
  19. 19.
    Simons, K., Kooperberg, C., Huang, E., Baker, D.: Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. Journal of Molecular Biology 268, 209–225 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Julia Handl
    • 1
  • Simon C. Lovell
    • 1
  • Joshua Knowles
    • 1
  1. 1.The University of ManchesterUK

Personalised recommendations