Skip to main content

The Influence of Mutation on Protein-Ligand Docking Optimization: A Locality Analysis

  • Conference paper
Parallel Problem Solving from Nature – PPSN X (PPSN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5199))

Included in the following conference series:

Abstract

Evolutionary approaches to protein-ligand docking typically use a real-value encoding and mutation operators based on Gaussian and Cauchy distributions. The choice of mutation is important for an efficient algorithm for this problem. We investigate the effect of mutation operators by locality analysis. High locality means that small variations in the genotype imply small variations in the phenotype. Results show that Gaussian-based operators have stronger locality than Cauchy-based ones, especially if an annealing scheme is used to control the variance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Neumaier, A.: Molecular modeling of proteins and mathematical prediction of protein structure. SIAM Review 39, 407–460 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Morris, G.M., Olson, A.J., Goodsell, D.S.: Protein-ligand docking. In: Clark, D.E. (ed.) Evolutionary Algorithms in Molecular Design, pp. 31–48. Wiley-VCH (2000)

    Google Scholar 

  3. Thomsen, R.: Protein-ligand docking with evolutionary algorithms. In: Fogel, G.B., Corne, D.W., Pan, Y. (eds.) Computational Intelligence in Bioinformatics, pp. 169–195. Wiley-IEEE Press, Chichester (2008)

    Google Scholar 

  4. Korb, O., Stützle, T., Exner, T.: An ant colony optimization approach to flexible protein-ligand docking. Swarm Intelligence 1, 115–134 (2007)

    Article  Google Scholar 

  5. Thomsen, R.: Flexible ligand docking using evolutionary algorithms: investigating the effects of variation operators and local search hybrids. Biosystems 72, 57–73 (2003)

    Article  Google Scholar 

  6. Sendhoff, B., Kreutz, M., Seelen, W.V.: A condition for the genotype-phenotype mapping: Casualty. In: 7th Int. Conf. on Genetic Algorithms, pp. 73–80 (1997)

    Google Scholar 

  7. Rothlauf, F.: On the locality of representations. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2003), pp. 1608–1609 (2003)

    Google Scholar 

  8. Raidl, G.R., Gottlieb, J.: Empirical analysis of locality heriability and heuristic bias in evolutionary algorithms: A case study for the multidimensional knapsack problem. Evolutionary Computation Journal 13, 441–475 (2005)

    Article  Google Scholar 

  9. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J.: Automated docking using a lamarckian genetic algorithm and and empirical binding free energy function. Journal of Computational Chemistry 19, 1639–1662 (1998)

    Article  Google Scholar 

  10. Pereira, F.B., Marques, J., Leitão, T., Tavares, J.: Analysis of locality in hybrid evolutionary cluster optimization. In: Proceedings of the 2006 IEEE Congress on Evolutionary Computation, Vancouver, Canada, pp. 8049–8056. IEEE Press, Los Alamitos (2006)

    Google Scholar 

  11. Dixon, J.S.: Flexible docking of ligands to receptor sites using genetic algorithms. In: Proc. of the 9th European Symposium on Structure-Activity Relationships, Leiden, The Netherlands, pp. 412–413. ESCOM Science Publishers (1993)

    Google Scholar 

  12. Moitessier, N., Englebienne, P., Lee, D., Lawandi, J., Corbeil, C.: Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. British Journal of Pharmacology 153, 1–20 (2007)

    Google Scholar 

  13. Wright, S.: The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Proceedings of the VI International Conference on Genetics, vol. 1, pp. 356–366 (1932)

    Google Scholar 

  14. Jones, T.: Evolutionary Algorithms, Fitness Landscapes and Search. PhD thesis, University of New Mexico, Albuquerque, New Mexico (1995)

    Google Scholar 

  15. Weinberger, E.D.: Correlated and uncorrelated fitness landscapes and how to tell the difference. Biological Cybernetics 63, 325–336 (1990)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tavares, J., Tantar, AA., Melab, N., Talbi, EG. (2008). The Influence of Mutation on Protein-Ligand Docking Optimization: A Locality Analysis. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds) Parallel Problem Solving from Nature – PPSN X. PPSN 2008. Lecture Notes in Computer Science, vol 5199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87700-4_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87700-4_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87699-1

  • Online ISBN: 978-3-540-87700-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics