Advertisement

Coevolving Cellular Automata with Memory for Chemical Computing: Boolean Logic Gates in the BZ Reaction

  • Christopher Stone
  • Rita Toth
  • Ben de Lacy Costello
  • Larry Bull
  • Andrew Adamatzky
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5199)

Abstract

We propose that the behaviour of non-linear media can be controlled automatically through coevolutionary systems. By extension, forms of unconventional computing, i.e., massively parallel non-linear computers, can be realised by such an approach. In this study a light-sensitive sub-excitable Belousov-Zhabotinsky reaction is controlled using various heterogeneous cellular automata. A checkerboard image comprising of varying light intensity cells is projected onto the surface of a catalyst-loaded gel resulting in rich spatio-temporal chemical wave behaviour. The coevolved cellular automata are shown to be able to control chemical activity through dynamic control of the light intensity. The approach is demonstrated through the creation of a number of simple Boolean logic gates.

Keywords

Cellular Automaton NAND Gate Input Presentation Coevolutionary Approach Unconventional Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamatzky, A. (ed.): Collision-based Computing. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  2. Adamatzky, A., De Lacy Costello, B., Asai, Y.: Reaction Diffusion Computers. Elsevier, Amsterdam (2005)Google Scholar
  3. Alonso-Sanz, R.: One-dimensional, r=2 cellular automata with memory. International Journal of Bifurcation and Chaos 14, 3217–3248 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  4. Andre, D., Koza, J.R., Bennett, F.H., Keane, M.: Genetic Programming III. MIT Press, Cambridge (1999)zbMATHGoogle Scholar
  5. De Lacy Costello, B., Adamatzky, A.: Experimental implementation of collision-based gates in Belousov–Zhabotinsky medium. Chaos Solitons and Fractals 25, 535–544 (2005)CrossRefzbMATHGoogle Scholar
  6. Field, R.J., Noyes, R.M.: Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction. J. Chem. Phys. 60, 1877–1884 (1973)CrossRefGoogle Scholar
  7. Gardner, M.: The fantastic combinations of John Conway’s new solitaire game ‘Life’. Scientific American 223(4), 120–123 (1970)CrossRefGoogle Scholar
  8. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press (1975)Google Scholar
  9. Kauffman, S.A.: The Origins of Order: Self-Organization and Selection in Evolution, Oxford (1993)Google Scholar
  10. Koza, J.R.: Genetic Programming. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  11. Krug, H.-J., Pohlmann, L., Kuhnert, L.: Analysis of the Modified Complete Oregonator accounting for oxygen sensitivity and photosensitivity of Belousov-Zhabotinsky systems. J. Phys. Chem. 94, 4862–4866 (1990)CrossRefGoogle Scholar
  12. Mitchell, M., Hraber, P., Crutchfield, J.: Revisiting the edge of chaos: Evolving cellular automata to perform computations. Complex Systems 7, 83–130 (1993)Google Scholar
  13. Mitchell, M., Crutchfield, J., Hraber, P.: Evolving cellular automata to perform computations: Mechanisms and impediments. Physica D 75, 361–391 (1994)CrossRefzbMATHGoogle Scholar
  14. Rössler, O.: In: Conrad, M., Güttinger, W., Dal Cin, M. (eds.) Physics and Mathematics of the Nervous System. Springer, Heidelberg (1974)Google Scholar
  15. Sipper, M.: Evolution of Parallel Cellular Machines. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  16. Stone, C., Toth, R., Adamatzky, A., Bull, L., De Lacy Costello, B.: Towards the coevolution of cellular automata controllers for chemical computing with the B-Z reaction. In: Thierens, D., et al. (eds.) GECCO 2007: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 472–478. ACM Press, New York (2007)Google Scholar
  17. Toth, R., Stone, C., Adamatzky, A., De Lacy Costello, B., Bull, L.: Dynamic control and information processing in the Belousov-Zhabotinsky reaction using a co-evolutionary algorithm. J. Chem. Phys. (in press, 2008)Google Scholar
  18. Von Neumann, J.: The Theory of Self-Reproducing Automata. University of Illinois (1966)Google Scholar
  19. Wang, J., Kádár, S., Jung, P., Showalter, K.: Noise driven avalanche behavior in subexcitable media. Physical Review Letters 82, 855–858 (1999)CrossRefGoogle Scholar
  20. Zaikin, A.N., Zhabotinsky, A.M.: Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature 225, 535–537 (1970)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Christopher Stone
    • 1
  • Rita Toth
    • 1
  • Ben de Lacy Costello
    • 1
  • Larry Bull
    • 1
  • Andrew Adamatzky
    • 1
  1. 1.Unconventional Computing GroupUniversity of the West of EnglandBristolUK

Personalised recommendations