Advertisement

Evolvable Agents in Static and Dynamic Optimization Problems

  • Juan L. J. Laredo
  • Pedro A. Castillo
  • Antonio M. Mora
  • Juan J. Merelo
  • Agostinho Rosa
  • Carlos Fernandes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5199)

Abstract

This paper investigates the behaviour of the Evolvable Agent model (EvAg) in static and dynamic environments. The EvAg is a spatially structured Genetic Algorithm (GA) designed to work on Peer-to-Peer (P2P) systems in which the population structure is a small-world graph built by newscast, a P2P protocol. Additionally to the profits in computing performance, EvAg maintains genetic diversity at the small-world relationships between individuals in a sort of social network. Experiments were conducted in order to assess how EvAg scales on deceptive and non-deceptive trap functions. In addition, the proposal was tested on dynamic environments. The results show that the EvAg scales and adapts better to dynamic environments than a standard GA and an improved version of the well-known Random Immigrants Genetic Algorithm.

Keywords

Evolvable Agent Bias Error Cache Size Dynamic Optimization Problem Standard Genetic Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackley, D.H.: A connectionist machine for genetic hillclimbing. Kluwer Academic Publishers, Norwell (1987)CrossRefGoogle Scholar
  2. 2.
    Alba, E., Badia, J.S., Luque, G.: A Study of Canonical GAs for NSOPs. In: Meteheuristics. Operations Research/Computer Science Interfaces, vol. 39, pp. 245–260. Springer, US (2007)CrossRefGoogle Scholar
  3. 3.
    Angeline, P.J.: Tracking extrema in dynamic environments. In: Angeline, P.J., McDonnell, J.R., Reynolds, R.G., Eberhart, R. (eds.) EP 1997. LNCS, vol. 1213. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  4. 4.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Heidelberg (2003)CrossRefzbMATHGoogle Scholar
  5. 5.
    Giacobini, M., Tomassini, M., Tettamanzi, A., Alba, E.: Selection intensity in cellular evolutionary algorithms for regular lattices. IEEE Transactions on Evolutionary Computation 9(5), 489–505 (2005)CrossRefGoogle Scholar
  6. 6.
    Giacobini, M., Alba, E., Tettamanzi, A., Tomassini, M.: Modeling selection intensity for toroidal cellular evolutionary algorithms. In: EWSPT 1996. LNCS, vol. 1149, pp. 1138–1149. Springer, Heidelberg (1996)Google Scholar
  7. 7.
    Giacobini, M., Preuss, M., Tomassini, M.: Effects of scale-free and small-world topologies on binary coded self-adaptive CEA. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2006. LNCS, vol. 3906, pp. 85–96. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Jelasity, M., van Steen, M.: Large-scale newscast computing on the Internet. Technical Report IR-503, Vrije Universiteit Amsterdam, Department of Computer Science, Amsterdam, The Netherlands (October 2002)Google Scholar
  9. 9.
    Laredo, J.L.J., Eiben, E.A., Schoenauer, M., Castillo, P.A., Mora, A.M., Merelo, J.J.: Exploring selection mechanisms for an agent-based distributed evolutionary algorithm. In: GECCO 2007, pp. 2801–2808. ACM Press, New York (2007)Google Scholar
  10. 10.
    Laredo, J.L.J., Castillo, P.A., Mora, A.M., Merelo, J.J.: Exploring population structures for locally concurrent and massively parallel evolutionary algorithms. In: IEEE Congress on Evolutionary Computation (CEC2008), WCCI 2008 Proceedings, June 2008, pp. 2610–2617. IEEE Computer Society Press, Los Alamitos (2008)Google Scholar
  11. 11.
    Preuss, M., Lasarczyk, C.: On the importance of information speed in structured populations. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 91–100. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Sarma, J., De Jong, K.A.: The behavior of spatially distributed evolutionary algorithms in non-stationary environments. In: Banzhaf, W., Daida, J.M., Eiben, E.A., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) GECCO 1999, Orlando, FL, USA, pp. 572–578. Morgan Kaufmann, San Francisco (1999)Google Scholar
  13. 13.
    Sastry, K.: Evaluation-relaxation schemes for genetic and evolutionary algorithms. Technical Report 2002004, University of Illinois at Urbana-Champaign, Urbana, IL (2001)Google Scholar
  14. 14.
    Tinós, R., Yang, S.: A self-organizing random immigrants genetic algorithm for dynamic optimization problems. Genetic Programming and Evolvable Machines 8(3), 255–286 (2007)CrossRefGoogle Scholar
  15. 15.
    Tomassini, M.: Spatially Structured Evolutionary Algorithms: Artificial Evolution in Space and Time. Natural Computing Series. Springer, New York (2005)Google Scholar
  16. 16.
    Voulgaris, S., Jelasity, M., van Steen, M.: A Robust and Scalable Peer-to-Peer Gossiping Protocol. In: Moro, G., Sartori, C., Singh, M.P. (eds.) AP2PC 2003. LNCS (LNAI), vol. 2872, pp. 47–58. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Yang, S., Yao, X.: Experimental study on population-based incremental learning algorithms for dynamic optimization problems. Soft Comput. 9(11), 815–834 (2005)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Juan L. J. Laredo
    • 1
  • Pedro A. Castillo
    • 1
  • Antonio M. Mora
    • 1
  • Juan J. Merelo
    • 1
  • Agostinho Rosa
    • 2
  • Carlos Fernandes
    • 1
    • 2
  1. 1.Department of Architecture and Computer TechnologyUniversity of GranadaSpain
  2. 2.LASEEB-ISR/ISTUniversity of LisbonPortugal

Personalised recommendations