The Generalisation Ability of a Selection Architecture for Genetic Programming

  • David Jackson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5199)


As an alternative to various existing approaches to incorporating modular decomposition and reuse in genetic programming (GP), we have proposed a new method for hierarchical evolution. Based on a division of the problem’s test case inputs into subsets, it employs a program structure that we refer to as a selection architecture. Although the performance of GP systems based on this architecture has been shown to be superior to that of conventional systems, the nature of evolved programs is radically different, leading to speculation as to how well such programs may generalise to deal with previously unseen inputs. We have therefore performed additional experimentation to evaluate the approach’s generalisation ability, and have found that it seems to stand up well against standard GP in this regard.


Genetic Programming Code Fragment Cartesian Genetic Programming Input Case Modular Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  2. 2.
    Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge (1994)zbMATHGoogle Scholar
  3. 3.
    Angeline, P.J., Pollack, J.: Evolutionary Module Acquisition. In: Proc. 2nd Annual Conf. on Evolutionary Programming, La Jolla, CA, pp. 154–163 (1993)Google Scholar
  4. 4.
    Rosca, J.P., Ballard, D.H.: Discovery of Subroutines in Genetic Programming. In: Angeline, P., Kinnear Jr., K.E. (eds.) Advances in Genetic Programming 2, ch. 9, pp. 177–202. MIT Press, Cambridge (1996)Google Scholar
  5. 5.
    Walker, J.A., Miller, J.F.: Evolution and Acquisition of Modules in Cartesian Genetic Programming. In: Keijzer, M., O’Reilly, U.-M., Lucas, S.M., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 187–197. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Kushchu, I.: Genetic Programming and Evolutionary Generalization. IEEE Transactions on Evolutionary Computation 6(5), 431–442 (2002)CrossRefGoogle Scholar
  7. 7.
    Kushchu, I.: An Evaluation of Evolutionary Generalisation in Genetic Programming. Artificial Intelligence Review 18, 3–14 (2002)CrossRefzbMATHGoogle Scholar
  8. 8.
    Gagné, C., Schoenauer, M., Parizeau, M., Tomassini, M.: Genetic Programming, Validation Sets and Parsimony Pressure. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 109–120. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Francone, F.D., Nordin, P., Banzhaf, W.: Benchmarking the Generalization Capabilities of a Compiling Genetic Programming System Using Sparse Data Sets. In: Koza, J.R., et al. (eds.) Proc. 1st Annual Genetic Programming Conf (GP 1996), pp. 72–80. MIT Press, Cambridge (1996)Google Scholar
  10. 10.
    Banzhaf, W., Francone, F.D., Nordin, P.: The Effect of Extensive Use of the Mutation Operator on Generalization in Genetic Programming using Sparse Data Sets. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 300–309. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  11. 11.
    Vanneschi, L., Rochat, D., Tomassini, M.: Multi-Optimization Improves Genetic Programming Generalization Ability. In: Thierens, D., et al. (eds.) Proc. GECCO 2007, p. 1759. ACM Press, New York (2007)Google Scholar
  12. 12.
    Droste, S.: Efficient Genetic Programming for Finding Good Generalizing Boolean Functions. In: Koza, J.R., et al. (eds.) Proc. 2nd Annual Conf. on Genetic Programming, pp. 82–87. Morgan Kaufmann, San Francisco (1997)Google Scholar
  13. 13.
    Rosca, J.: Generality versus Size in Genetic Programming. In: Koza, J.R., et al. (eds.) Proc. 1st Annual Genetic Programming Conf (GP 1996), pp. 381–387. MIT Press, Cambridge (1996)Google Scholar
  14. 14.
    Cavaretta, M.J., Chellapilla, K.: Data Mining Using Genetic Programming: The Implications of Parsimony on Generalization Error. In: Proc. CEC 1999, Washington, DC, USA, pp. 1330–1337 (1999)Google Scholar
  15. 15.
    Jackson, D.: The Performance of a Selection Architecture for Genetic Programming. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 170–181. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • David Jackson
    • 1
  1. 1.Dept. of Computer ScienceUniversity of LiverpoolLiverpoolUnited Kingdom

Personalised recommendations