Convergence Analysis of Evolution Strategies with Random Numbers of Offspring

  • Olivier François
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5199)


Hitting times of the global optimum for evolutionary algorithms are usually available for simple unimodal problems or for simplified algorithms. In discrete problems, the number of results that relate the convergence rate of evolution strategies to the geometry of the optimisation landscape is restricted to a few theoretical studies. This article introduces a variant of the canonical (μ + λ)-ES, called the Poisson-ES, for which the number of offspring is not deterministic, but is instead sampled from a Poisson distribution with mean λ. After a slight change on the rank-based selection for the μ parents, and assuming that the number of offspring is small, we show that the convergence rate of the new algorithm is dependent on a geometric quantity that measures the maximal width of adaptive valleys. The argument of the proof is based on the analogy of the Poisson-ES with a basic Mutation-or-Selection evolutionary strategy introduced in a previous work.


Evolution Strategies Discrete Optimisation Convergence Theory Markov Chains Large Deviations Mutation or Selection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auger, A.: Convergence results for (1,λ)-SA-ES using the theory of ϕ-irreducible Markov chains. Theor. Comput. Sci. 334, 35–69 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bartz-Beielstein, T.: Experimental Research in Evolutionary Computation – The New Experimentalism. Natural Computing Series. Springer, Berlin Google Scholar
  3. 3.
    Beyer, H.-G.: The Theory of Evolution Strategies. Natural Computing Series. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Beyer, H.-G., Schwefel, H.-P., Wegener, I.: How to analyse evolutionary algorithms. Theor. Comput. Sci. 287, 101–130 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Beyer, H.-G., Schwefel, H.-P.: Evolution strategies – A comprehensive introduction. Natural Computing 1, 3–52 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Bienvenüe, A., François, O.: Global convergence for evolution strategies in spherical problems: some simple proofs and difficulties. Theor. Comput. Sci. 306, 269–289 (2003)CrossRefzbMATHGoogle Scholar
  7. 7.
    Cercueil, A., François, O.: Sharp asymptotics for fixation times in stochastic population genetics models at low mutation probabilities. Journal of Statistical Physics 110, 311–332 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Cerf, R.: Asymptotic convergence of genetic algorithms. Adv. Appl. Probab. 30, 521–550 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1 + 1) EA. Theor. Comput. Sci. (276), 51–81 (2002)Google Scholar
  10. 10.
    François, O.: An evolutionary algorithm for global minimization and its Markov chain analysis. IEEE Trans. Evol. Comput. 2, 77–90 (1998)CrossRefGoogle Scholar
  11. 11.
    François, O., Lavergne, C.: Design of evolutionary algorithms: A statistical perspective. IEEE Trans. Evol. Comput. 5, 129–148 (2001)CrossRefGoogle Scholar
  12. 12.
    François, O.: Global optimization with exploration/selection algorithms and simulated annealing. Ann. Appl. Probab. 12, 248–271 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems. Springer, New York (1984)CrossRefzbMATHGoogle Scholar
  14. 14.
    Hajek, B.: Cooling schedules for optimal annealing. Math. Oper. Research 13, 311–329 (1988)CrossRefzbMATHGoogle Scholar
  15. 15.
    Jägersküpper, J.: Algorithmic analysis of a basic evolutionary algorithm for continuous optimization. Theor. Comput. Sci. 379, 329–347 (2007)CrossRefzbMATHGoogle Scholar
  16. 16.
    Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1996)Google Scholar
  17. 17.
    Neumann, F., Wegener, I., Randomized, I.: local search, evolutionary algorithms, and the minimum spanning tree problem. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 713–724. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Rudolph, G.: Finite Markov chain results in evolutionary computation: A tour d’horizon. Fundam. Inform. 35, 67–89 (1998)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Schmitt, L.M.: Theory of genetic algorithms. Theor. Comput. Sci. 259, 1–61 (2001)CrossRefzbMATHGoogle Scholar
  20. 20.
    Wegener, I., Witt, C.: On the optimization of monotone polynomials by simple randomized search heuristics. Combin. Probab. Comput. 14, 225–247 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Witt, C.: Runtime Analysis of the (μ + 1) EA on Simple Pseudo-Boolean Functions. Evol. Comput. 14, 65–86 (2006)Google Scholar
  22. 22.
    Wright, S.: The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Proceedings of the VI International Congress of Genetics, pp. 356–366 (1932)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Olivier François
    • 1
  1. 1.Institut National Polytechnique de Grenoble, TIMC-IMAG, Faculté de MédecineLa TroncheFrance

Personalised recommendations