Advertisement

Testing the Intermediate Disturbance Hypothesis: Effect of Asynchronous Population Incorporation on Multi-Deme Evolutionary Algorithms

  • Juan J. Merelo
  • Antonio M. Mora
  • Pedro A. Castillo
  • Juan L. J. Laredo
  • Lourdes Araujo
  • Ken C. Sharman
  • Anna I. Esparcia-Alcázar
  • Eva Alfaro-Cid
  • Carlos Cotta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5199)

Abstract

In P2P and volunteer computing environments, resources are not always available from the beginning to the end, getting incorporated into the experiment at any moment. Determining the best way of using these resources so that the exploration/exploitation balance is kept and used to its best effect is an important issue. The Intermediate Disturbance Hypothesis states that a moderate population disturbance (in any sense that could affect the population fitness) results in the maximum ecological diversity. In the line of this hypothesis, we will test the effect of incorporation of a second population in a two-population experiment. Experiments performed on two combinatorial optimization problems, MMDP and P-Peaks, show that the highest algorithmic effect is produced if it is done in the middle of the evolution of the first population; starting them at the same time or towards the end yields no improvement or an increase in the number of evaluations needed to reach a solution. This effect is explained in the paper, and ascribed to the intermediate disturbance produced by first-population immigrants in the second population.

Keywords

Genetic Algorithm Evolutionary Algorithm Evolutionary Computation Migration Policy Discrete Optimization Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Laredo, J., Castillo, P., Mora, A., Merelo, J.: Exploring population structures for locally concurrent and massively parallel evolutionary algorithms. In: [17], pp. 2610–2617Google Scholar
  2. 2.
    Merelo, J.J., García, A.M., Laredo, J.L.J., Lupión, J., Tricas, F.: Browser-based distributed evolutionary computation: performance and scaling behavior. In: GECCO 2007: Proceedings of the 2007 GECCO conference companion on Genetic and evolutionary computation, pp. 2851–2858. ACM Press, New York (2007)CrossRefGoogle Scholar
  3. 3.
    Merelo, J., Castillo, P., Laredo, J., Mora, A., Prieto, A.: Asynchronous distributed genetic algorithms with Javascript and JSON. In: [17], pp. 1372–1379 Google Scholar
  4. 4.
    Morrison, R., De Jong, K., Syst, M., McLean, V.: Triggered hypermutation revisited. In: Proceedings of the 2000 Congress on Evolutionary Computation, vol. 2 (2000)Google Scholar
  5. 5.
    Jones, T.: Crossover, macromutation, and population-based search. In: Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 73–80. Morgan Kaufmann, San Francisco (1995)Google Scholar
  6. 6.
    Giacobini, M., Alba, E., Tomassini, M., et al.: Selection intensity in asynchronous cellular evolutionary algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference, Chicago, USA, pp. 955–966 (2003)Google Scholar
  7. 7.
    Alba, E., Troya, J.: Analyzing synchronous and asynchronous parallel distributed genetic algorithms. Future Generation Computer Systems 17(4), 451–465 (2001)CrossRefzbMATHGoogle Scholar
  8. 8.
    Fernandez, F., Galeano, G., Gomez, J.: Comparing Synchronous and Asynchronous Parallel and Distributed Genetic Programming Models. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B. (eds.) EuroGP 2002. LNCS, vol. 2278. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Cantú-Paz, E.: Migration policies, selection pressure, and parallel evolutionary algorithms. Journal of Heuristics 7(4), 311–334 (2001)CrossRefzbMATHGoogle Scholar
  10. 10.
    Alba, E., Troya, J.M.: Influence of the migration policy in parallel distributed GAs with structured and panmictic populations. Appl. Intell. 12(3), 163–181 (2000)CrossRefGoogle Scholar
  11. 11.
    Giacobini, M., Preuss, M., Tomassini, M.: Effects of scale-free and small-world topologies on binary coded self-adaptive CEA. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2006. LNCS, vol. 3906, pp. 85–96. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Goldberg, D.E., Deb, K., Horn, J.: Massive multimodality, deception, and genetic algorithms. In: Männer, R., Manderick, B. (eds.) Parallel Problem Solving from Nature, vol. 2. Elsevier Science Publishers, B. V, Amsterdam (1992)Google Scholar
  13. 13.
    Jong, K.A.D., Potter, M.A., Spears, W.M.: Using problem generators to explore the effects of epistasis. In: Bäck, T. (ed.) Proceedings of the Seventh International Conference on Genetic Algorithms (ICGA 1997). Morgan Kaufmann, San Francisco (1997)Google Scholar
  14. 14.
    Merelo-Guervós, J.J.: Evolutionary computation in Perl. In: Perl Mongers, M. (ed.) YAPC, Europe 2002, pp. 2–22 (2002)Google Scholar
  15. 15.
    Syswerda, G.: A Study of Reproduction in Generational and Steady-State Genetic Algorithms. Foundations of Genetic Algorithms (1991)Google Scholar
  16. 16.
    Ward, J., Stanford, J.: Intermediate-Disturbance Hypothesis: An Explanation for Biotic Diversity Patterns in Lotic Ecosystems. Dynamics of Lotic Systems, Ann Arbor Science, Ann Arbor MI. 1983. 347-356 p, 2 fig, 35 ref. (1983)Google Scholar
  17. 17.
    IEEE Congress on Evolutionary Computation (CEC2008). In: WCCI 2008 Proceedings. IEEE Press, Los Alamitos (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Juan J. Merelo
    • 1
  • Antonio M. Mora
    • 1
  • Pedro A. Castillo
    • 1
  • Juan L. J. Laredo
    • 1
  • Lourdes Araujo
    • 2
  • Ken C. Sharman
    • 3
  • Anna I. Esparcia-Alcázar
    • 3
  • Eva Alfaro-Cid
    • 3
  • Carlos Cotta
    • 4
  1. 1.Dept. ATCUniversidad de GranadaSpain
  2. 2.Dept. LSI, UNEDMadridSpain
  3. 3.Instituto Tecnológico de InformáticaValenciaSpain
  4. 4.Dept. LCCUniversidad de MálagaSpain

Personalised recommendations