Advertisement

A Compass to Guide Genetic Algorithms

  • Jorge Maturana
  • Frédéric Saubion
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5199)

Abstract

Parameter control is a key issue to enhance performances of Genetic Algorithms (GA). Although many studies exist on this problem, it is rarely addressed in a general way. Consequently, in practice, parameters are often adjusted manually. Some generic approaches have been experimented by looking at the recent improvements provided by the operators. In this paper, we extend this approach by including operators’ effect over population diversity and computation time. Our controller, named Compass, provides an abstraction of GA’s parameters that allows the user to directly adjust the balance between exploration and exploitation of the search space. The approach is then experimented on the resolution of a classic combinatorial problem (SAT).

Keywords

Genetic Algorithm Execution Time Application Rate Conjunctive Normal Form Adaptive Genetic Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eiben, A.E., Michalewicz, Z., Schoenauer, M., Smith, J.: Parameter Control in Evolutionary Algorithms. In: [20], pp. 19–46Google Scholar
  2. 2.
    Jong, K.D.: Parameter Setting in EAs: a 30 Year Perspective. In: [20], pp. 1–48Google Scholar
  3. 3.
    Meyer-Nieberg, S., Beyer, H.: Self-Adaptation in EAs. In: [20], pp. 47–75Google Scholar
  4. 4.
    Kee, E., Airey, S., Cyre, W.: An adaptive genetic algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp. 391–397. Morgan Kaufmann, San Francisco (2001)Google Scholar
  5. 5.
    Maturana, J., Saubion, F.: Towards a generic control strategy for EAs: an adaptive fuzzy-learning approach. In: Proceedings of IEEE International Conference on Evolutionary Computation (CEC), pp. 4546–4553 (2007)Google Scholar
  6. 6.
    Wong, L., Leung, H.: A novel approach in parameter adaptation and diversity maintenance for GAs. Soft Computing 7(8), 506–515 (2003)CrossRefGoogle Scholar
  7. 7.
    Thierens, D.: Adaptive Strategies for Operator Allocation. In: [20], pp. 77–90Google Scholar
  8. 8.
    Igel, C., Kreutz, M.: Operator adaptation in structure optimization of neural networks. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), p. 1094. Morgan Kaufmann, San Francisco (2001)Google Scholar
  9. 9.
    Lobo, F., Goldberg, D.: Decision making in a hybrid genetic algorithm. In: Proc. of IEEE Intl. Conference on Evolutionary Computation (CEC), pp. 122–125 (1997)Google Scholar
  10. 10.
    Whitacre, J., Pham, T., Sarker, R.: Use of statistical outlier detection method in adaptive evolutionary algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp. 1345–1352. ACM Press, New York (2006)Google Scholar
  11. 11.
    Eiben, A., Marchiori, E., Valkó, V.: Evolutionary algorithms with on-the-fly population size adjustment. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 41–50. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Ursem, R.: Diversity-guided evolutionary algorithms. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 462–474. Springer, Heidelberg (2002)Google Scholar
  13. 13.
    Eiben, A., Horvath, M., Kowalczyk, W., Schut, M.: Reinforcement learning for online control of evolutionary algorithms. In: Brueckner, S.A., Hassas, S., Jelasity, M., Yamins, D. (eds.) ESOA 2006. LNCS (LNAI), vol. 4335, pp. 151–160. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Lis, J.: Parallel genetic algorithm with dynamic control parameter. In: Proc. of IEEE Intl. Conference on Evolutionary Computation (CEC), pp. 324–329 (1996)Google Scholar
  15. 15.
    Tsutsui, S., Fujimoto, Y., Ghosh, A.: Forking GAs: GAs with search space division schemes. Evolutionary Computation 5(1), 61–80 (1997)CrossRefGoogle Scholar
  16. 16.
    Harik, G., Lobo, F.: A parameter-less GA. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp. 258–265 (1999)Google Scholar
  17. 17.
    Cook, S.A.: The complexity of theorem-proving procedures. In: STOC 1971: Proceedings of the third annual ACM symposium on Theory of computing, pp. 151–158. ACM Press, New York (1971)CrossRefGoogle Scholar
  18. 18.
    Hoos, H., Stützle, T.: SATLIB: An Online Resource for Research on SAT, pp. 283–292. IOS Press, Amsterdam (2000), www.satlib.org Google Scholar
  19. 19.
    Lardeux, F., Saubion, F., Hao, J.K.: GASAT: A genetic local search algorithm for the satisfiability problem. Evolutionary Computation 14(2), 223–253 (2006)CrossRefGoogle Scholar
  20. 20.
    Lobo, F., Lima, C., Michalewicz, Z. (eds.): Parameter Setting in Evolutionary Algorithms. Studies in Computational Intelligence, vol. 54. Springer, Heidelberg (2007)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jorge Maturana
    • 1
  • Frédéric Saubion
    • 1
  1. 1.LERIAUniversité d’AngersAngersFrance

Personalised recommendations