Advertisement

Adaptive Encoding: How to Render Search Coordinate System Invariant

  • Nikolaus Hansen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5199)

Abstract

This paper describes a method for rendering search coordinate system independent, Adaptive Encoding. Adaptive Encoding is applicable to any iterative search algorithm and employs incremental changes of the representation of solutions. One attractive way to change the representation in the continuous domain is derived from Covariance Matrix Adaptation (CMA). In this case, adaptive encoding recovers the CMA evolution strategy, when applied to an evolution strategy with cumulative step-size control. Consequently, adaptive encoding provides the means to apply CMA-like representation changes to any search algorithm in the continuous domain. Experimental results confirm the expectation that CMA-based adaptive encoding will generally speed up a typical evolutionary algorithm on non-separable, ill-conditioned problems by orders of magnitude.

Keywords

Search Algorithm Candidate Solution Iteration Step Algorithm State Continuous Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beyer, H.-G., Schwefel, H.-P.: Evolution strategies: A comprehensive introduction. Natural Computing 1(1), 3–52 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Davidon, W.: Variable Metric Method for Minimization. SIAM J. Optim. 1, 1 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Hansen, N.: Invariance, self-adaptation and correlated mutations in evolution strategies. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 355–364. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Hansen, N.: The CMA evolution strategy: a comparing review. In: Lozano, J., Larrañaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a new evolutionary computation. Advances on estimation of distribution algorithms, pp. 75–102. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Hansen, N.: Adaptive encoding for optimization. Research Report 6518, INRIA (April 2008), http://hal.inria.fr/inria-00275983/en
  6. 6.
    Hansen, N., Gemperle, F., Auger, A., Koumoutsakos, P.: When do heavy-tail distributions help? In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 62–71. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation 9(2), 159–195 (2001)CrossRefGoogle Scholar
  8. 8.
    Larrañaga, P.: A review on estimation of distribution algorithms. In: Larrañaga, P., Lozano, J. (eds.) Estimation of distribution algorithms, pp. 80–90. Kluwer Academic Publishers, Dordrecht (2002)CrossRefGoogle Scholar
  9. 9.
    Salomon, R.: Reevaluating genetic algorithm performance under coordinate rotation of benchmark functions. BioSystems 39(3), 263–278 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Nikolaus Hansen
    • 1
  1. 1.Microsoft Research–INRIA Joint CentreOrsay CedexFrance

Personalised recommendations