Advertisement

Analysis of Nested CRC with Additional Net Data in Communication

  • Tina Mattes
  • Frank Schiller
  • Annemarie Mörwald
  • Thomas Honold
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5219)

Abstract

Cyclic Redundancy Check (CRC) is an established coding method to ensure a low probability of undetected errors in data transmission. CRC is widely used in industrial field bus systems where communication is often executed through different layers. Some layers have their own CRC and add their own specific data to the net data that is meant to be sent. Up to now, this nesting is not yet included in the safety proof of systems. Hence, additional effort is made to achieve a required degree of safety which was probably on hand but could not be proven. The paper presents an approach to involve the nesting in the calculation of the residual error probability based on methods of coding theory. This approach helps to reduce the number of worst case assumptions in the overall safety proof and finally to reduce the necessary online efforts like the number of parity bits.

Keywords

Cyclic Redundancy Check Residual error probability Safety-critical communication 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    International Electronical Comission: Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related Systems. (IEC 61508) (2005)Google Scholar
  2. 2.
    International Organization for Standardization, International Electrotechnical Commission (ISO/IEC): Information Technology - Open Systems Interconnection - Basic Reference Model: Basic Model (ISO/IEC 7498-1) (1996)Google Scholar
  3. 3.
    Mattes, T., Pfahler, J., Schiller, F., Honold, T.: Analysis of Combinations of CRC in Industrial Communication. In: Saglietti, F., Oster, N. (eds.) SAFECOMP 2007. LNCS, vol. 4680, pp. 329–341. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Peterson, W., Weldon, E.J.: Error Correcting Codes. MIT Press, Cambridge (1996)Google Scholar
  5. 5.
    Schiller, F., Mattes, T.: An Efficient Method to Evaluate CRC-Polynomials for Safety-Critical Communication. Journal of Applied Computer Science 14, 57–80 (2006)Google Scholar
  6. 6.
    Mac Williams, F.J., Sloane, N.J.A.: Theory of Error-Correcting Codes. North-Holland Mathematical Library, Amsterdam (1991)Google Scholar
  7. 7.
    Sweeney, P.: Codierung zur Fehlererkennung und Fehlerkorrektur. MIT Press, Cambridge (1996)Google Scholar
  8. 8.
    Mattes, T.: Untersuchung zur effizienten Bestimmung der Güte von Polynomen für CRC-Codes. University of Trier, Siemens AG, Nuremberg (2004) (in German)Google Scholar
  9. 9.
    Mattes, T.: Analysis of Nested CRC with Additional Net Data by Stochastic Automata. In: 7th IEEE International Workshop on Factory Communication Systems Communication in Automation, Dresden, Germany, May 20-23, pp. 295–304 (2008)Google Scholar
  10. 10.
    Mörwald, A.: Analyse der Verschachtelung von CRC-Verfahren in der industriellen Kommunikation. TU München (2007)Google Scholar
  11. 11.
    Schiller, F., Mattes, T., Büttner, H., Sachs, J.: A New Method to Obtain Sufficient Independency of Nested Cyclic Redundancy Checks. In: 5th International Conference Safety of Industrial Automated Systems, SIAS 2007, Tokyo, Japan, pp. 149–154 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Tina Mattes
    • 1
  • Frank Schiller
    • 1
  • Annemarie Mörwald
    • 2
  • Thomas Honold
    • 3
  1. 1.Institute of Information Technology in Mechanical EngineeringTechnische Universität MünchenGarching near MunichGermany
  2. 2.sd&m AG, software design & managementMunichGermany
  3. 3.Institute of Information and Communication EngineeringZhejiang UniversityHangzhouP.R. China

Personalised recommendations